Brian Davison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5940773/publications.pdf

Version: 2024-02-01

150 papers 14,054 citations

38 h-index 20358 116 g-index

154 all docs

154 docs citations

154 times ranked 14850 citing authors

#	Article	IF	CITATIONS
1	Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy and Environmental Science, 2022, 15, 938-990.	30.8	93
2	Structural Reorganization of Noncellulosic Polymers Observed In Situ during Dilute Acid Pretreatment by Small-Angle Neutron Scattering. ACS Sustainable Chemistry and Engineering, 2022, 10, 314-322.	6.7	7
3	Deuterium incorporation into cellulose: a mini-review of biological and chemical methods. Cellulose, 2022, 29, 4269.	4.9	O
4	Chemical and Morphological Structure of Transgenic Switchgrass Organosolv Lignin Extracted by Ethanol, Tetrahydrofuran, and \hat{I}^3 -Valerolactone Pretreatments. ACS Sustainable Chemistry and Engineering, 2022, 10, 9041-9052.	6.7	10
5	n-Butanol or isobutanol as a value-added fuel additive to inhibit microbial degradation of stored gasoline. Fuel Communications, 2022, 12, 100072.	5.2	1
6	Economic impact of yield and composition variation in bioenergy crops: <scp><i>Populus trichocarpa</i></scp> . Biofuels, Bioproducts and Biorefining, 2021, 15, 176-188.	3.7	13
7	Cover Image, Volume 15, Issue 1. Biofuels, Bioproducts and Biorefining, 2021, 15, i.	3.7	O
8	Towards cost-competitive middle distillate fuels from ethanol within a market-flexible biorefinery concept. Green Chemistry, 2021, 23, 9534-9548.	9.0	12
9	Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blendstocks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12576-12583.	7.1	27
10	Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16776-16781.	7.1	29
11	Structural Insights into Low and High Recalcitrance Natural Poplar Variants Using Neutron and X-ray Scattering. ACS Sustainable Chemistry and Engineering, 2020, 8, 13838-13849.	6.7	7
12	Solvent-induced membrane stress in biofuel production: molecular insights from small-angle scattering and all-atom molecular dynamics simulations. Green Chemistry, 2020, 22, 8278-8288.	9.0	9
13	Gene targets for engineering osmotolerance in Caldicellulosiruptor bescii. Biotechnology for Biofuels, 2020, 13, 50.	6.2	3
14	Silencing Folylpolyglutamate Synthetase1 (FPGS1) in Switchgrass (Panicum virgatum L.) Improves Lignocellulosic Biofuel Production. Frontiers in Plant Science, 2020, 11, 843.	3.6	6
15	Production of deuterated biomass by cultivation of Lemna minor (duckweed) in D2O. Planta, 2019, 249, 1465-1475.	3.2	3
16	Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnology for Biofuels, 2019, 12, 15.	6.2	47
17	Hemicellulose–Cellulose Composites Reveal Differences in Cellulose Organization after Dilute Acid Pretreatment. Biomacromolecules, 2019, 20, 893-903.	5.4	21
18	Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nature Biotechnology, 2018, 36, 249-257.	17.5	136

#	Article	IF	Citations
19	Tension wood structure and morphology conducive for better enzymatic digestion. Biotechnology for Biofuels, 2018, 11, 44.	6.2	26
20	Impact of hydration and temperature history on the structure and dynamics of lignin. Green Chemistry, 2018, 20, 1602-1611.	9.0	30
21	Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility. Plant Biotechnology Journal, 2018, 16, 39-49.	8.3	26
22	Significance of Lignin S/G Ratio in Biomass Recalcitrance of <i>Populus trichocarpa</i> Variants for Bioethanol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 2162-2168.	6.7	100
23	Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum. Biotechnology Letters, 2018, 40, 303-308.	2.2	2
24	Ultrastructure and Enzymatic Hydrolysis of Deuterated Switchgrass. Scientific Reports, 2018, 8, 13226.	3.3	9
25	Nanometrology of Biomass for Bioenergy: The Role of Atomic Force Microscopy and Spectroscopy in Plant Cell Characterization. Frontiers in Energy Research, 2018, 6, .	2.3	13
26	Hemicellulose characterization of deuterated switchgrass. Bioresource Technology, 2018, 269, 567-570.	9.6	20
27	Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells. Scientific Reports, 2017, 7, 43583.	3.3	28
28	Cellulose and lignin colocalization at the plant cell wall surface limits microbial hydrolysis of Populus biomass. Green Chemistry, 2017, 19, 2275-2285.	9.0	33
29	Understanding Multiscale Structural Changes During Dilute Acid Pretreatment of Switchgrass and Poplar. ACS Sustainable Chemistry and Engineering, 2017, 5, 426-435.	6.7	29
30	Selective conversion of bio-derived ethanol to renewable BTX over Ga-ZSM-5. Green Chemistry, 2017, 19, 4344-4352.	9.0	57
31	Catalytic Dehydration of Biomass Derived 1-Propanol to Propene over M-ZSM-5 (M = H, V, Cu, or Zn). Industrial & Description of Biomass Derived 1-Propanol to Propene over M-ZSM-5 (M = H, V, Cu, or Zn).	3.7	15
32	Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy. Scientific Reports, 2017, 7, 152.	3.3	29
33	Insights of biomass recalcitrance in natural <i>Populus trichocarpa</i> variants for biomass conversion. Green Chemistry, 2017, 19, 5467-5478.	9.0	82
34	Dynamics of water bound to crystalline cellulose. Scientific Reports, 2017, 7, 11840.	3.3	82
35	Effect of in Vivo Deuteration on Structure of Switchgrass Lignin. ACS Sustainable Chemistry and Engineering, 2017, 5, 8004-8010.	6.7	11
36	Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2017, 83, .	3.1	13

#	Article	IF	Citations
37	Allelopathic effects of exogenous phenylalanine: a comparison of four monocot species. Planta, 2017, 246, 673-685.	3.2	3
38	Transgenic switchgrass (<i>Panicum virgatum</i> L.) targeted for reduced recalcitrance to bioconversion: a 2â€year comparative analysis of fieldâ€grown lines modified for target gene or genetic element expression. Plant Biotechnology Journal, 2017, 15, 688-697.	8.3	29
39	The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers. Biotechnology for Biofuels, 2017, 10, 281.	6.2	19
40	Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective. Biotechnology for Biofuels, 2017, 10, 285.	6.2	21
41	Development and use of a switchgrass (Panicum virgatum L.) transformation pipeline by the BioEnergy Science Center to evaluate plants for reduced cell wall recalcitrance. Biotechnology for Biofuels, 2017, 10, 309.	6.2	26
42	Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure. Biotechnology for Biofuels, 2016, 9, 31.	6.2	54
43	Catalytic Conversion of Biomass-Derived Ethanol to Liquid Hydrocarbon Blendstock: Effect of Light Gas Recirculation. Energy & Fuels, 2016, 30, 10611-10617.	5.1	9
44	Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. Biotechnology for Biofuels, 2016, 9, 125.	6.2	50
45	Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnology for Biofuels, 2016, 9, 8.	6.2	78
46	Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons. Scientific Reports, 2015, 5, 16039.	3.3	38
47	Production of Bacterial Cellulose with Controlled Deuterium–Hydrogen Substitution for Neutron Scattering Studies. Methods in Enzymology, 2015, 565, 123-146.	1.0	11
48	Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation. Biotechnology for Biofuels, 2015, 8, 211.	6.2	20
49	The DOE Bioenergy Research Centers: History, Operations, and Scientific Output. Bioenergy Research, 2015, 8, 881-896.	3.9	8
50	The impact of biotechnological advances on the future of <scp>US</scp> bioenergy. Biofuels, Bioproducts and Biorefining, 2015, 9, 454-467.	3.7	11
51	Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance. Bioenergy Research, 2015, 8, 910-921.	3.9	57
52	Production of deuterated switchgrass by hydroponic cultivation. Planta, 2015, 242, 215-222.	3.2	15
53	Fermentation of Dilute Acid Pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis. Bioenergy Research, 2015, 8, 1014-1021.	3.9	5
54	Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Systems Biology, 2015, 9, 30.	3.0	24

#	Article	IF	Citations
55	Opto-nanomechanical spectroscopic material characterization. Nature Nanotechnology, 2015, 10, 870-877.	31.5	34
56	Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics. Frontiers in Microbiology, 2014, 5, 246.	3.5	54
57	Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. Plant Biotechnology Journal, 2014, 12, 1207-1216.	8.3	46
58	Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment. Cellulose, 2014, 21, 873-878.	4.9	37
59	Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 2014, 344, 1246843.	12.6	2,994
60	Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chemistry, 2014, 16, 63-68.	9.0	198
61	Karhunen–LoÔve treatment to remove noise and facilitate data analysis in sensing, spectroscopy and other applications. Analyst, The, 2014, 139, 5927-5935.	3.5	13
62	Chemical Factors that Control Lignin Polymerization. Journal of Physical Chemistry B, 2014, 118, 164-170.	2.6	46
63	Controlled incorporation of deuterium into bacterial cellulose. Cellulose, 2014, 21, 927-936.	4.9	30
64	Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellumstrain. Biotechnology for Biofuels, 2014, 7, 75.	6.2	46
65	Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels, 2013, 6, 15.	6.2	468
66	Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives. Genome Announcements, 2013, 1, .	0.8	8
67	Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses. PLoS ONE, 2013, 8, e68886.	2.5	64
68	Neutron Technologies for Bioenergy Research. Industrial Biotechnology, 2012, 8, 209-216.	0.8	17
69	The Increasing Importance and Capabilities of Biomass Characterization. Industrial Biotechnology, 2012, 8, 189-190.	0.8	2
70	Development of New Methods in Scanning Probe Microscopy for Lignocellulosic Biomass Characterization. Industrial Biotechnology, 2012, 8, 245-249.	0.8	8
71	Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnology for Biofuels, 2012, 5, 71.	6.2	96
72	Optomechanical spectroscopy with broadband interferometric and quantum cascade laser sources. Optics Letters, 2011, 36, 3251.	3.3	9

#	Article	IF	CITATIONS
73	Optical and plasmonic spectroscopy with cantilever shaped materials. Journal Physics D: Applied Physics, 2011, 44, 445102.	2.8	5
74	Nanometrology of delignified i>Populus / i>using mode synthesizing atomic force microscopy. Nanotechnology, 2011, 22, 465702.	2.6	19
75	Lignin content in natural <i>Populus</i> variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6300-6305.	7.1	515
76	Spectroscopy and atomic force microscopy of biomass. Ultramicroscopy, 2010, 110, 701-707.	1.9	31
77	Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics, 2009, 10, 34.	2.8	138
78	Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. Journal of Power Sources, 2009, 191, 520-527.	7.8	86
79	Session 9: Advances in Bioprocessing and Related Separations Technology. Applied Biochemistry and Biotechnology, 2009, 155, 126-127.	2.9	0
80	NMR Characterization of C3H and HCT Down-Regulated Alfalfa Lignin. Bioenergy Research, 2009, 2, 198-208.	3.9	82
81	The Goals and Research of the BioEnergy Sciences Center (BESC): Developing Cost-effective and Sustainable Means of Producing Biofuels by Overcoming Biomass Recalcitrance. Bioenergy Research, 2009, 2, 177-178.	3.9	5
82	Piezoresistive cantilever array sensor for consolidated bioprocess monitoring. Scanning, 2009, 31, 204-210.	1.5	12
83	Improving Activity of Salt-Lyophilized Enzymes in Organic Media. Applied Biochemistry and Biotechnology, 2008, 146, 215-222.	2.9	8
84	How biotech can transform biofuels. Nature Biotechnology, 2008, 26, 169-172.	17.5	984
85	Solubility of toluene, benzene and TCE in high-microbial concentration systems. Chemosphere, 2008, 73, 1737-1740.	8.2	8
86	Techno-Economic Analysis of Biocatalytic Processes for Production of Alkene Epoxides. , 2007, , 437-449.		0
87	Techno-economic analysis of biocatalytic processes for production of alkene epoxides. Applied Biochemistry and Biotechnology, 2007, 137-140, 437-449.	2.9	8
88	The Path Forward for Biofuels and Biomaterials. Science, 2006, 311, 484-489.	12.6	4,935
89	Determination and Comparison of the Baseline Proteomes of the Versatile MicrobeRhodopseudomonaspalustrisunder Its Major Metabolic States. Journal of Proteome Research, 2006, 5, 287-298.	3.7	69
90	Variation of S/G Ratio and Lignin Content in a <i>Populus</i> Family Influences the Release of Xylose by Dilute Acid Hydrolysis. Applied Biochemistry and Biotechnology, 2006, 130, 427-435.	2.9	135

#	Article	IF	Citations
91	Substrate desolvation as a governing factor in enzymatic transformations of PAHs in aqueous-acetonitrile mixtures. Biotechnology Progress, 2004, 20, 1251-1254.	2.6	14
92	Performance of Chloroperoxidase Stabilization in Mesoporous Sol-Gel Glass Using <i>In Situ </i> Glucose Oxidase Peroxide Generation. Applied Biochemistry and Biotechnology, 2004, 113, 273-286.	2.9	34
93	Succinic Acid Adsorption from Fermentation Broth and Regeneration. Applied Biochemistry and Biotechnology, 2004, 114, 653-670.	2.9	52
94	Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Applied Microbiology and Biotechnology, 2004, 65, 330-335.	3.6	46
95	Performance of Chloroperoxidase Stabilization in Mesoporous Sol-Gel Glass Using In Situ Glucose Oxidase Peroxide Generation., 2004,, 273-285.		4
96	Characterization of the 70S Ribosome from Rhodopseudomonas palustris Using an Integrated "Top-Down―and "Bottom-Up―Mass Spectrometric Approach. Journal of Proteome Research, 2004, 3, 965-978.	3.7	83
97	A Simplified Method To Create Quantitative, "Fixed―Uranyl-Contaminated Metal Coupons. Health Physics, 2004, 86, S113-S115.	0.5	1
98	Succinic Acid Adsorption from Fermentation Broth and Regeneration., 2004,, 653-669.		2
99	Partitioning of BTEX constituents and chloroorganics in high-biomass systems. Environmental Progress, 2003, 22, 95-102.	0.7	9
100	Direct transesterification of gases by ?dry? immobilized lipase. Biotechnology and Bioengineering, 2002, 78, 251-256.	3.3	23
101	Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnology and Bioengineering, 2001, 74, 249-255.	3.3	195
102	Effect of Temperature on Biofiltration of Nitric Oxide. Applied Biochemistry and Biotechnology, 2001, 91-93, 205-212.	2.9	4
103	Enhancement of the Conversion of Toluene by Pseudomonas putida F-1 Using Organic Cosolvents. , 2001, , 195-204.		O
104	Effect of Temperature on Biofiltration of Nitric Oxide., 2001,, 205-211.		0
105	Influence of high biomass concentrations on alkane solubilities. , 2000, 68, 279-284.		32
106	Ethanol Production from Glucose and Xylose by Immobilized Zymomonas mobilis CP4(pZB5). Applied Biochemistry and Biotechnology, 2000, 84-86, 525-542.	2.9	45
107	Ethanol Production from Glucose and Xylose by Immobilized Zymomonas mobilis CP4(pZB5). , 2000, , 525-541.		1
108	Influence of high biomass concentrations on alkane solubilities. Biotechnology and Bioengineering, 2000, 68, 279-84.	3.3	1

#	Article	IF	CITATIONS
109	Ethanol Production from Corn Starch in a Fluidized-Bed Bioreactor. Applied Biochemistry and Biotechnology, 1999, 78, 359-372.	2.9	20
110	Estimation of mass transfer and kinetics in operating trickle-bed bioreactors for removal of VOCS. Environmental Progress, 1999, 18, 87-92.	0.7	15
111	Ethanol Production from Corn Starch in a Fluidized-Bed Bioreactor. , 1999, , 359-372.		3
112	Microbial removal of alkanes from dilute gaseous waste streams: mathematical modeling of advanced bioreactor systems. Journal of Chemical Technology and Biotechnology, 1998, 72, 93-98.	3.2	13
113	Production of ethanol from starch by co-immobilizedZymomonas mobilis-glucoamylase in a fluidized-bed reactor. Applied Biochemistry and Biotechnology, 1998, 70-72, 429-439.	2.9	9
114	Production of Ethanol from Starch by Co-Immobilized Zymomonas mobilis-Glucoamylase in a Fluidized-Bed Reactor., 1998,, 429-439.		0
115	Nomenclature and Methodology for Classification of Nontraditional Biocatalysis. Biotechnology Progress, 1997, 13, 512-518.	2.6	26
116	Microbial Removal of Alkanes from Dilute Gaseous Waste Streams: Kinetics and Mass Transfer Considerations. Biotechnology Progress, 1997, 13, 814-821.	2.6	25
117	Gas-phase enzyme catalysis using immobilized lipase for ester production. Biotechnology Letters, 1997, 11, 747-750.	0.5	10
118	Performance of coimmobilized yeast and amyloglucosidase in a fluidized bed reactor for fuel ethanol production. Applied Biochemistry and Biotechnology, 1997, 63-65, 483-493.	2.9	11
119	Production of succinic acid by anaerobiospirillum succiniciproducens. Applied Biochemistry and Biotechnology, 1997, 63-65, 565-576.	2.9	79
120	Performance of Coimmobilized Yeast and Amyloglucosidase in a Fluidized Bed Reactor for Fuel Ethanol Production., 1997,, 483-493.		0
121	Introduction to the Proceedings of the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, 1996, 57-58, iii-vi.	2.9	0
122	The effect of biotin on the production of succinic acid byAnaerobiospirillum succiniciproducens. Applied Biochemistry and Biotechnology, 1996, 57-58, 633-638.	2.9	20
123	Modeling scale-up effects on a small pilot-scale fluidized-bed reactor for fuel ethanol production. Applied Biochemistry and Biotechnology, 1996, 57-58, 639-647.	2.9	5
124	Modeling Scale-Up Effects on a Small Pilot-Scale Fluidized-Bed Reactor for Fuel Ethanol Production. , 1996, , 639-647.		0
125	Development of a predictive description of an immobilized-cell, three-phase, fluidized-bed bioreactor. Biotechnology and Bioengineering, 1995, 46, 139-146.	3.3	9
126	Design and demonstration of an immobilized-cell fluidized-bed reactor for the efficient production of ethanol. Applied Biochemistry and Biotechnology, 1995, 51-52, 559-568.	2.9	12

#	Article	IF	Citations
127	Economic assessment of ethanol production comparing traditional and fluidized-bed bioreactors. Applied Biochemistry and Biotechnology, 1995, 51-52, 593-604.	2.9	12
128	Stability characterization and comparison of two fluidized-bed bioreactors. Bioprocess and Biosystems Engineering, 1994, 10, 1-3.	0.5	3
129	Screening of resins for use in a biparticle fluidized-bed bioreactor for the continuous fermentation and separation of lactic acid. Applied Biochemistry and Biotechnology, 1994, 45-46, 545-554.	2.9	31
130	An advanced bioprocessing concept for the conversion of waste paper to ethanol. Applied Biochemistry and Biotechnology, 1994, 45-46, 641-653.	2.9	22
131	The removal of alkanes in a liquid-continuous gas-phase bioreactor: Preliminary considerations. Applied Biochemistry and Biotechnology, 1994, 45-46, 917-923.	2.9	5
132	Sustained degradation of n-pentane and isobutane in a gas-phase bioreactor. Biotechnology Letters, 1993, 15, 633-636.	2.2	6
133	Continuous direct solvent extraction of butanol in a fermenting fluidized-bed bioreactor with immobilizedClostridium acetobutylicum. Applied Biochemistry and Biotechnology, 1993, 39-40, 415-426.	2.9	57
134	Ethanol, the ultimate feedstock. Applied Biochemistry and Biotechnology, 1992, 34-35, 395-417.	2.9	18
135	Simultaneous fermentation and separation of lactic acid in a biparticle fluidized-bed bioreactor. Applied Biochemistry and Biotechnology, 1992, 34-35, 431-439.	2.9	34
136	A proposed biparticle fluidized-bed for lactic acid fermentation and simultaneous adsorption. Biotechnology and Bioengineering, 1992, 39, 365-368.	3. 3	44
137	Modeling of an immobilized-cell three-phase fluidized-bed bioreactor. Applied Biochemistry and Biotechnology, 1991, 28-29, 685-698.	2.9	12
138	Minimizing the errors associated with the determination of effective diffusion coefficients when using spherical cell immobilization matrices. Biotechnology and Bioengineering, 1991, 37, 386-388.	3. 3	13
139	Size changes associated with metal adsorption onto modified bone gelatin beads. Biotechnology and Bioengineering, 1991, 38, 923-928.	3.3	5
140	Use of immobilized microbial membrane fragments to remove oxygen and favor the acetone-butanol fermentation. Biotechnology Progress, 1990, 6, 210-213.	2.6	6
141	Utilization of microbially solubilized coal. Applied Biochemistry and Biotechnology, 1990, 24-25, 447-456.	2.9	18
142	Gas holdup in three-phase immobilized-cell bioreactors. Applied Biochemistry and Biotechnology, 1990, 24-25, 485-496.	2.9	6
143	Accumulation of Cu++ onto modified bone-gelatin beads. Biotechnology Letters, 1990, 4, 435-440.	0.5	2
144	Phase Holdup and Dispersion in a Three-Phase Fluidized-Bed Bioreactor with Low-Density Gel Beads. Annals of the New York Academy of Sciences, 1990, 589, 670-677.	3.8	6

#	Article	IF	CITATION
145	Dispersion and holdup in a three-phase fluidized-bed bioreactor. Applied Biochemistry and Biotechnology, 1989, 20-21, 449-460.	2.9	19
146	Operability and feasibility of ethanol production by immobilizedZymomonas mobilis in a fluidized-bed bioreactor. Applied Biochemistry and Biotechnology, 1988, 18, 19-34.	2.9	53
147	Effect of pH oscillations on a competing mixed culture. Biotechnology and Bioengineering, 1986, 28, 1127-1137.	3.3	48
148	Coexistence of S. cerevisiae and E. coli in chemostat under substrate competition and product inhibition. Biotechnology and Bioengineering, 1986, 28, 1742-1752.	3.3	13
149	Stable Competitive Coexistence in a Continuous Fermentor with Size-Selective Properties. Biotechnology Progress, 1985, 1, 260-269.	2.6	20
150	A Novel Bioreactor-Cell Precipitator Combination for High-Cell Density, High-Flow Fermentations. Biotechnology Progress, 1985, 1, 250-259.	2.6	23