Markus Ganzera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5940547/publications.pdf

Version: 2024-02-01

87723 143772 4,291 138 38 57 citations h-index g-index papers 141 141 141 5281 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polyacetylenes from the Apiaceae Vegetables Carrot, Celery, Fennel, Parsley, and Parsnip and Their Cytotoxic Activities. Journal of Agricultural and Food Chemistry, 2005, 53, 2518-2523.	2.4	223
2	Recent advances on HPLC/MS in medicinal plant analysis. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 744-757.	1.4	170
3	Quantitative HPLC analysis of withanolides in Withania somnifera. Fìtoterapìâ, 2003, 74, 68-76.	1.1	127
4	Inhibitory effects of the essential oil of chamomile (Matricaria recutita L.) and its major constituents on human cytochrome P450 enzymes. Life Sciences, 2006, 78, 856-861.	2.0	120
5	In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. Journal of Ethnopharmacology, 2017, 196, 94-103.	2.0	98
6	Novel Derivatives of 9,10-Anthraquinone Are Selective Algicides against the Musty-Odor Cyanobacterium Oscillatoria perornata. Applied and Environmental Microbiology, 2003, 69, 5319-5327.	1.4	97
7	Determination of Steroidal Saponins in Tribulus terrestris by Reversed-Phase High-Performance Liquid Chromatography and Evaporative Light Scattering Detection. Journal of Pharmaceutical Sciences, 2001, 90, 1752-1758.	1.6	96
8	Recent advances on HPLC/MS in medicinal plant analysisâ€"An update covering 2011–2016. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 211-233.	1.4	96
9	Analysis of the Marker Compounds of Rhodiola rosea L. (Golden Root) by Reversed Phase High Performance Liquid Chromatography Chemical and Pharmaceutical Bulletin, 2001, 49, 465-467.	0.6	92
10	Chemical Profiling and Standardization of Lepidium meyenii (Maca) by Reversed Phase High Performance Liquid Chromatography Chemical and Pharmaceutical Bulletin, 2002, 50, 988-991.	0.6	80
11	Quality control of herbal medicines by capillary electrophoresis: Potential, requirements and applications. Electrophoresis, 2008, 29, 3489-3503.	1.3	79
12	Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC–MS. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 437-442.	1.4	75
13	Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography. Analytica Chimica Acta, 2008, 614, 196-200.	2.6	73
14	Analysis of anthraquinones in rhubarb (Rheum palmatum and Rheum officinale) by supercritical fluid chromatography. Talanta, 2015, 144, 1239-1244.	2.9	70
15	Hypericum perforatumâ€"Chemical profiling and quantitative results of St. John's Wort products by an improved high-performance liquid chromatography method. Journal of Pharmaceutical Sciences, 2002, 91, 623-630.	1.6	69
16	Anxiolytic properties of Piper methysticum extract samples and fractions in the chick social-separation-stress procedure. Phytotherapy Research, 2003, 17, 210-216.	2.8	65
17	Determination of polyphenolic constituents and biological activities of bark extracts from different <i>Pinus</i> species. Journal of the Science of Food and Agriculture, 2009, 89, 1339-1345.	1.7	65
18	Development and Validation of an HPLC/UV/MS Method for Simultaneous Determination of 18 Preservatives in Grapefruit Seed Extract. Journal of Agricultural and Food Chemistry, 2006, 54, 3768-3772.	2.4	64

#	Article	IF	CITATIONS
19	High-Performance Liquid Chromatographic Determination of Xanthohumol in Rat Plasma, Urine, and Fecal Samples. Journal of Chromatographic Science, 2004, 42, 378-382.	0.7	63
20	High Yield of Podophyllotoxin from Leaves of Podophyllum peltatum by In situ Conversion of Podophyllotoxin 4-O-l ² -D-Glucopyranoside. Planta Medica, 2001, 67, 97-99.	0.7	60
21	Bioactivity-Guided Isolation of 1,2,3,4,6-Penta- <i>O</i> -galloyl- <scp>d</scp> -glucopyranose from <i>Paeonia lactiflora</i> Roots As a PTP1B Inhibitor. Journal of Natural Products, 2010, 73, 1578-1581.	1.5	57
22	Altitudinal Variation of Secondary Metabolite Profiles in Flowering Heads of <i>Matricaria chamomilla</i> cv. BONA <i></i> />. Planta Medica, 2008, 74, 453-457.	0.7	56
23	Determination of adenine and pyridine nucleotides in glucose-limited chemostat cultures of Penicillium simplicissimum by one-step ethanol extraction and ion-pairing liquid chromatography. Analytical Biochemistry, 2006, 359, 132-140.	1.1	55
24	Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources. Planta Medica, 2015, 81, 813-820.	0.7	55
25	Simultaneous determination of and var. alkaloids by ion-pair chromatography. Talanta, 2005, 66, 889-894.	2.9	54
26	Investigation of U $ ilde{A}$ $\pm a$ De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa. Phytochemistry, 2001, 57, 781-785.	1.4	53
27	Analysis of alkaloids in Lotus (Nelumbo nucifera Gaertn.) leaves by non-aqueous capillary electrophoresis using ultraviolet and mass spectrometric detection. Journal of Chromatography A, 2013, 1302, 174-180.	1.8	53
28	Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens. Marine Drugs, 2015, 13, 6291-6305.	2.2	53
29	Analysis of phenolic glycosides and saponins in Primula elatior and Primula veris (primula root) by liquid chromatography, evaporative light scattering detection and mass spectrometry. Journal of Chromatography A, 2006, 1112 , $218-223$.	1.8	50
30	Supercritical fluid chromatography for the separation of isoflavones. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107, 364-369.	1.4	50
31	Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334. Marine Drugs, 2016, 14, 119.	2.2	50
32	Determination of coumarins in the roots of Angelica dahurica by supercritical fluid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2016, 129, 246-251.	1.4	50
33	Chemical profiling of mycosporineâ€like amino acids in twentyâ€three red algal species. Journal of Phycology, 2019, 55, 393-403.	1.0	46
34	The American mayapple revisitedâ€"podophyllum peltatumâ€"still a potential cash crop?. Economic Botany, 2000, 54, 471-476.	0.8	44
35	Differentiation of Cirsium japonicum and C. setosum by TLC and HPLC-MS. Phytochemical Analysis, 2005, 16, 205-209.	1.2	44
36	Supercritical Fluid Chromatography $\hat{a}\in$ Theoretical Background and Applications on Natural Products. Planta Medica, 2015, 81, 1570-1581.	0.7	42

3

#	Article	IF	CITATIONS
37	Analytical techniques for the determination of lactones inPiper methysticum forst. Chromatographia, 1999, 50, 649-653.	0.7	39
38	A Reversed Phase High Performance Liquid Chromatography Method for the Analysis of Boswellic Acids inBoswellia serrata. Planta Medica, 2001, 67, 778-780.	0.7	39
39	Prasiolin, a new UV-sunscreen compound in the terrestrial green macroalga Prasiola calophylla (Carmichael ex Greville) Kützing (Trebouxiophyceae, Chlorophyta). Planta, 2016, 243, 161-169.	1.6	37
40	Analysis of naphthoquinone derivatives in the Asian medicinal plant Eleutherine americana by RP-HPLC and LC–MS. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 990-993.	1.4	36
41	Separation of the major triterpenoid saponins in Bacopa monnieri by high-performance liquid chromatography. Analytica Chimica Acta, 2004, 516, 149-154.	2.6	35
42	Determination of quinolizidine alkaloids in different Lupinus species by NACE using UV and MS detection. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 1231-1235.	1.4	35
43	Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection. Journal of Pharmaceutical and Biomedical Analysis, 2017, 138, 153-157.	1.4	33
44	Quantitative analysis of pungent and anti-inflammatory phenolic compounds in olive oil by capillary electrophoresis. Food Chemistry, 2015, 169, 381-386.	4.2	32
45	Analysis of Terpenelactones in Ginkgo biloba by High Performance Liquid Chromatography and Evaporative Light Scattering Detection Chemical and Pharmaceutical Bulletin, 2001, 49, 1170-1173.	0.6	31
46	Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography. Journal of Chromatography A, 2018, 1554, 117-122.	1.8	31
47	Evaporative Light Scattering Detection (ELSD) for the Analysis of Natural Products. Current Pharmaceutical Analysis, 2005, 1, 135-144.	0.3	31
48	Improved Method for the Determination of Oxindole Alkaloids in Uncaria tomentosa by High Performance Liquid Chromatography. Planta Medica, 2001, 67, 447-450.	0.7	30
49	Simultaneous determination of monomeric and oligomeric alkannins and shikonins by highâ€performance liquid chromatography–diode array detection–mass spectrometry. Biomedical Chromatography, 2008, 22, 173-190.	0.8	30
50	Absolute Configuration of Mycosporine-Like Amino Acids, Their Wound Healing Properties and In Vitro Anti-Aging Effects. Marine Drugs, 2020, 18, 35.	2.2	30
51	HPLC-MS and MECC analysis of coumarins. Chromatographia, 1997, 46, 197-203.	0.7	28
52	Capillary electrochromatography of boswellic acids inBoswellia serrata Roxb Journal of Separation Science, 2003, 26, 1383-1388.	1.3	28
53	Recent Advancements and Applications in the Analysis of Traditional Chinese Medicines. Planta Medica, 2009, 75, 776-783.	0.7	27
54	Bostrychines A–F, Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from the Red Alga Bostrychia scorpioides. Marine Drugs, 2019, 17, 356.	2.2	27

#	Article	IF	CITATIONS
55	Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. BioMetals, 2013, 26, 969-979.	1.8	26
56	An innovative monolithic zwitterionic stationary phase for the separation of phenolic acids in coffee bean extracts by capillary electrochromatography. Analytica Chimica Acta, 2017, 963, 136-142.	2.6	26
57	Klebsormidin A and B, Two New UV-Sunscreen Compounds in Green Microalgal Interfilum and Klebsormidium Species (Streptophyta) From Terrestrial Habitats. Frontiers in Microbiology, 2020, 11 , 499.	1.5	26
58	Bioguided Isolation of (9 <i>Z</i>)-Octadec-9-enoic Acid from <i>Phellodendron amurense</i> Rupr. and Identification of Fatty Acids as PTP1B Inhibitors. Planta Medica, 2012, 78, 219-224.	0.7	25
59	Fast and improved separation of major coumarins in <i>Ammi visnaga</i> (L.) Lam. by supercritical fluid chromatography. Journal of Separation Science, 2016, 39, 4042-4048.	1.3	25
60	Phenolic compounds from Tragopogon porrifolius L Biochemical Systematics and Ecology, 2009, 37, 234-236.	0.6	24
61	Induction of Gentiana cruciata hairy roots and their secondary metabolites. Biologia (Poland), 2011, 66, 618-625.	0.8	24
62	In vitroPlant Regeneration from Leaf-Derived Callus ofCimicifuga racemosa. Planta Medica, 2002, 68, 912-915.	0.7	23
63	Transport of sennosides and sennidines from Cassia angustifolia and Cassia senna across Caco-2 monolayers – an in vitro model for intestinal absorption. Phytomedicine, 2008, 15, 373-377.	2.3	23
64	Human Ether-Ã-go-go Related Gene (hERG) Channel Blocking Aporphine Alkaloids from Lotus Leaves and Their Quantitative Analysis in Dietary Weight Loss Supplements. Journal of Agricultural and Food Chemistry, 2015, 63, 5634-5639.	2.4	23
65	Cycloartane triterpenes from Combretum quadrangulare. Phytochemistry, 1998, 49, 835-838.	1.4	22
66	Determination of gentisin, isogentisin, and amarogentin inGentiana lutea L. by capillary electrophoresis. Journal of Separation Science, 2008, 31, 195-200.	1.3	22
67	Analysis of rare flavonoid C-glycosides in Celtis australis L. by micellar electrokinetic chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 1165-1168.	1.4	22
68	Simultaneous determination of iridoids, phenylpropanoids and flavonoids in Lippia alba extracts by micellar electrokinetic capillary chromatography. Microchemical Journal, 2018, 138, 494-500.	2.3	22
69	Application of \hat{l}^2 -cyclodextrin for the analysis of the main alkaloids from Chelidonium majus by capillary electrophoresis. Journal of Chromatography A, 1995, 717, 271-277.	1.8	21
70	Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus. BioMetals, 2011, 24, 153-157.	1.8	21
71	Effects of elevated ultraviolet radiation on primary metabolites in selected alpine algae and cyanobacteria. Journal of Photochemistry and Photobiology B: Biology, 2015, 149, 149-155.	1.7	21
72	Determination of Naphthazarin Derivatives in Endemic Turkish Alkanna Species by Reversed Phase High Performance Liquid Chromatography. Planta Medica, 2007, 73, 267-272.	0.7	20

#	Article	IF	Citations
73	Shoot proliferation and HPLC-determination of iridoid glycosides in clones of Gentiana cruciata L. Plant Cell, Tissue and Organ Culture, 2011, 107, 175-180.	1.2	20
74	Lavender oil suppresses indoleamine 2,3-dioxygenase activity in human PBMC. BMC Complementary and Alternative Medicine, 2014, 14, 503.	3.7	20
75	Quantitative determination of alkannins and shikonins in endemic Mediterranean <i>Alkanna</i> species. Biomedical Chromatography, 2014, 28, 923-933.	0.8	20
76	Phytochemical and Analytical Characterization of Novel Sulfated Coumarins in the Marine Green Macroalga Dasycladus vermicularis (Scopoli) Krasser. Molecules, 2018, 23, 2735.	1.7	20
77	Pharmacological Targets of Kaempferol Within Inflammatory Pathways—A Hint Towards the Central Role of Tryptophan Metabolism. Antioxidants, 2020, 9, 180.	2.2	20
78	Oroxylum indicum seeds – Analysis of flavonoids by HPLC–MS. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70, 553-556.	1.4	18
79	Rapid analysis of nine lignans in Schisandra chinensis by supercritical fluid chromatography using diode array and mass spectrometric detection. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113254.	1.4	18
80	Quantitative Determination of Lactones in Piper methysticum (Kava-Kava) by Supercritical Fluid Chromatography. Planta Medica, 2017, 83, 1053-1057.	0.7	17
81	Polyols and <scp>UV</scp> â€sunscreens in the <i>Prasiola</i> â€clade (Trebouxiophyceae, Chlorophyta) as metabolites for stress response and chemotaxonomy. Journal of Phycology, 2018, 54, 264-274.	1.0	17
82	Terpenoids from the Stems of <i>Fissistigma polyanthoides</i> and Their Anti-Inflammatory Activity. Journal of Natural Products, 2019, 82, 2941-2952.	1.5	16
83	Analysis of natural products by SFC – Applications from 2015 to 2021. TrAC - Trends in Analytical Chemistry, 2021, 145, 116463.	5.8	16
84	Urtica dioica agglutinin: Separation, identification, and quantitation of individual isolectins by capillary electrophoresis and capillary electrophoresis-mass spectrometry. Electrophoresis, 2005, 26, 1724-1731.	1.3	15
85	Quantitative analysis of cycloartane glycosides in black cohosh rhizomes and dietary supplements by RRLC-ELSD and RRLC-qTOF-MS. Analytical and Bioanalytical Chemistry, 2011, 400, 2597-2605.	1.9	15
86	In Silico Predictions of Drug – Drug Interactions Caused by CYP1A2, 2C9 and 3A4 Inhibition – a Comparative Study of Virtual Screening Performance. Molecular Informatics, 2015, 34, 431-457.	1.4	15
87	HPLC fingerprinting and estimation of the bioactive components of Clutia richardiana L. as a potential hypoglycemic herbal tea. Phytotherapy Research, 2003, 17, 657-660.	2.8	14
88	Mushroom Tyrosinase-Based Enzyme Inhibition Assays Are Not Suitable for Bioactivity-Guided Fractionation of Extracts. Journal of Natural Products, 2019, 82, 136-147.	1.5	14
89	Determination of the Fatty Acid Content of Pumpkin Seed, Pygeum, and Saw Palmetto. Journal of Medicinal Food, 1999, 2, 21-27.	0.8	13
90	Separation of adrenergic amines in <i>Citrus aurantium</i> L. var. <i>amara</i> by capillary electrochromatography using a novel monolithic stationary phase. Journal of Separation Science, 2011, 34, 2301-2304.	1.3	13

#	Article	IF	CITATIONS
91	Separation of Podophyllum lignans by micellar electrokinetic capillary chromatography (MECC). Chromatographia, 1999, 49, 552-556.	0.7	12
92	The Dynamics of Plasma Membrane, Metabolism and Respiration (PM-M-R) in Penicillium ochrochloron CBS 123824 in Response to Different Nutrient Limitations—A Multi-level Approach to Study Organic Acid Excretion in Filamentous Fungi. Frontiers in Microbiology, 2017, 8, 2475.	1.5	12
93	Determination of Naphthazarin Derivatives in 16 Alkanna Species by RP-LC Using UV and MS for Detection. Chromatographia, 2009, 70, 963-967.	0.7	11
94	Capillary electrophoresis as a fast and efficient alternative for the analysis of Urceola rosea leaf extracts. FÃ-toterapÃ-â, 2018, 125, 1-5.	1.1	11
95	Phenolic compounds from the stems of Fissistigma polyanthoides and their anti-oxidant activities. Fìtoterapìâ, 2019, 137, 104252.	1.1	11
96	A new phenylpropanoid glycoside fromJasminum subtriplinerveBlume. Journal of Asian Natural Products Research, 2008, 10, 1035-1038.	0.7	10
97	Application of MEKC and monolithic CEC for the analysis of bioactive naphthoquinones in <i>Eleutherine americana (i). Electrophoresis, 2009, 30, 3757-3763.</i>	1.3	10
98	The Use of Capillary Electrochromatography for Natural Product Analysis – Theoretical Background and Recent Applications. Current Organic Chemistry, 2010, 14, 1769-1780.	0.9	10
99	Chemical profiling of Edelweiss (Leontopodium alpinum Cass.) extracts by micellar electrokinetic capillary chromatography. FÃ \neg toterapÃ \neg Ã ‡ , 2012, 83, 1680-1686.	1.1	10
100	Development and Validation of an HPLC Method for the Quantitative Analysis of Bromophenolic Compounds in the Red Alga Vertebrata lanosa. Marine Drugs, 2019, 17, 675.	2.2	10
101	Mycosporine-like amino acids, brominated and sulphated phenols: Suitable chemotaxonomic markers for the reassessment of classification of Bostrychia calliptera (Ceramiales, Rhodophyta). Phytochemistry, 2020, 174, 112344.	1.4	10
102	Contradictory effects of chemical filters in UV/ROS-stressed human keratinocyte and fibroblast cells. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 231-244.	0.9	10
103	Determination of safrole in differentAsarum species by headspace gas chromatography. Chromatographia, 1998, 47, 685-688.	0.7	9
104	Phytochemical and analytical characterization of constituents in Urceola rosea (Hook. & 2018, Arn.) D.J. Middleton leaves. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 66-69.	1.4	9
105	Phytochemical study of Rourea minor stems and the analysis of therein contained Bergenin and Catechin derivatives by capillary electrophoresis. Microchemical Journal, 2019, 149, 104063.	2.3	9
106	Chemotaxonomic Study of Bostrychia spp. (Ceramiales, Rhodophyta) Based on Their Mycosporine-Like Amino Acid Content. Molecules, 2020, 25, 3273.	1.7	9
107	Simultaneous determination of saponins and isoflavones in soybean (Glycine max L.) by reversed-phase liquid chromatography with evaporative light-scattering and ultraviolet detection. Journal of AOAC INTERNATIONAL, 2004, 87, 1189-94.	0.7	9
108	Quantitative Determination of Phenolic Compounds in Lotus (Nelumbo nucifera) Leaves by Capillary Zone Electrophoresis. Planta Medica, 2012, 78, 1796-1799.	0.7	8

#	Article	IF	Citations
109	Analysis of boswellic acids in dietary supplements containing Indian frankincense (Boswellia serrata) by Supercritical Fluid Chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2021, 201, 114106.	1.4	8
110	Analysis of cytokinin nucleotides by capillary zone electrophoresis with diode array and mass spectrometric detection in a recombinant enzyme in vitro reaction. Analytica Chimica Acta, 2012, 751, 176-181.	2.6	7
111	Phenylethanoid Glycosides from the Roots of <i>Digitalis ciliata </i> <scp>Trautv. </scp> . Helvetica Chimica Acta, 2016, 99, 241-245.	1.0	7
112	Optimization of an innovative vinylimidazole-based monolithic stationary phase and its use for pressured capillary electrochromatography. Journal of Pharmaceutical and Biomedical Analysis, 2019, 162, 117-123.	1.4	7
113	Fast and Efficient Separation of Eleven Mycosporine-like Amino Acids by UHPLC-DAD and Their Quantification in Diverse Red Algae. Marine Drugs, 2022, 20, 395.	2.2	7
114	Analysis of sesquiterpene lactones in Magnolia grandiflora L. by Micellar electrokinetic capillary chromatography. Chromatographia, 2001, 54, 665-668.	0.7	6
115	New Furostanol Glycosides from the Roots of Digitalis ciliata Trautv Helvetica Chimica Acta, 2015, 98, 224-231.	1.0	6
116	Steroid Composition of Fruit from Yucca gloriosa Introduced into Georgia. Chemistry of Natural Compounds, 2015, 51, 283-288.	0.2	6
117	Efficient Isolation of Mycosporine-Like Amino Acids from Marine Red Algae by Fast Centrifugal Partition Chromatography. Marine Drugs, 2022, 20, 106.	2.2	6
118	Steroidal and Triterpenoid Glycosides from Roots of Digitalis ciliata. Chemistry of Natural Compounds, 2017, 53, 492-496.	0.2	5
119	New Steroidal Glycosides from Pericarp of Digitalis ferruginea. Chemistry of Natural Compounds, 2017, 53, 1083-1087.	0.2	5
120	Megastigmane Glycosides from Leaves of Tribulus terrestris. Chemistry of Natural Compounds, 2018, 54, 63-65.	0.2	5
121	Critical evaluation of a putative glucosamine excretion by Aspergillus niger CBS120.49 and Penicillium ochrochloron CBS123.824 under citric acid producing conditions. Scientific Reports, 2019, 9, 7496.	1.6	5
122	Analysis of the Mycosporine-Like Amino Acid (MAA) Pattern of the Salt Marsh Red Alga Bostrychia scorpioides. Marine Drugs, 2021, 19, 321.	2.2	5
123	Separation of the major triterpenoid saponins in Bacopa monnieri by high-performance liquid chromatography. Analytica Chimica Acta, 2004, 516, 149-149.	2.6	4
124	Oroxylum indicum Seedsâ€"Analysis of Flavonoids by Micellar Electrokinetic Chromatography. Chromatography (Basel), 2014, 1, 1-8.	1.2	4
125	New Flavonoid Glycosides from the Leaves of <i>Tribulus terrestris</i> . Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	4
126	Nucleosides from Tribulus terrestris. Chemistry of Natural Compounds, 2017, 53, 1010-1011.	0.2	3

#	Article	IF	CITATIONS
127	Isolation of Three Triterpene Saponins, Including Two New Oleanane Derivatives, fromSoldanella alpinaand Hydrophilic Interaction Liquid Chromatography-Evaporative Light Scattering Detection of these Three Saponins in FourSoldenellaSpecies. Phytochemical Analysis, 2017, 28, 567-574.	1.2	3
128	Sesquiterpene Glycosides from Flowers of Yucca gloriosa. Chemistry of Natural Compounds, 2018, 54, 73-76.	0.2	3
129	Cytotoxic Compounds of Two Demosponges (Aplysina aerophoba and Spongia sp.) from the Aegean Sea. Biomolecules, 2021, 11, 723.	1.8	3
130	Plant Analysis – State of the Art and Future Developments. Planta Medica, 2009, 75, 671-671.	0.7	2
131	New furostanol glycosides from <i>Polygonatum multiflorum</i> (L.) All Natural Product Research, 2019, 33, 9-16.	1.0	2
132	Low temporal dynamics of mycosporineâ€like amino acids in benthic cyanobacteria from an alpine lake. Freshwater Biology, 2021, 66, 169-176.	1.2	2
133	A convenient separation strategy for fungal anthraquinones by centrifugal partition chromatography. Journal of Separation Science, 2021, , .	1.3	2
134	Occurrence of grandifloroside-11-methyl ester in Nyssa ogeche (Nyssaceae). Biochemical Systematics and Ecology, 2005, 33, 327-329.	0.6	1
135	New Steroidal Glycosides from Pericarps of Digitalis ciliata. Chemistry of Natural Compounds, 2020, 56, 282-285.	0.2	1
136	Triterpene Glycosides. , 2012, , 885-904.		0
137	Preface - Analytical issues realted to cannabinoids. Journal of Pharmaceutical and Biomedical Analysis, 2022, 208, 114474.	1.4	0
138	In memory of Professor Sergio Pinzauti. Journal of Pharmaceutical and Biomedical Analysis, 2022, 210, 114567.	1.4	0