List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5940259/publications.pdf Version: 2024-02-01

ANDERS H LUND

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C	Overlock 10	0 Tf 50 662 T 1,430
4	MicroRNA-10a Binds the 5′UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Molecular Cell, 2008, 30, 460-471.	4.5	1,168
5	Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells. Journal of Biological Chemistry, 2008, 283, 1026-1033.	1.6	1,001
6	MicroRNA and cancer. Molecular Oncology, 2012, 6, 590-610.	2.1	963
7	RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA. Cell, 2007, 131, 1273-1286.	13.5	655
8	Epigenetics and cancer. Genes and Development, 2004, 18, 2315-2335.	2.7	415
9	A Dual Program for Translation Regulation in Cellular Proliferation and Differentiation. Cell, 2014, 158, 1281-1292.	13.5	414
10	LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene, 2006, 372, 137-141.	1.0	356
11	Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell, 2018, 173, 1204-1216.e26.	13.5	332
12	p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death and Differentiation, 2010, 17, 236-245.	5.0	314
13	microRNA-101 is a potent inhibitor of autophagy. EMBO Journal, 2011, 30, 4628-4641.	3.5	302
14	Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7635-7640.	3.3	290
15	Polycomb complexes and silencing mechanisms. Current Opinion in Cell Biology, 2004, 16, 239-246.	2.6	273
16	MicroRNA regulation of autophagy. Carcinogenesis, 2012, 33, 2018-2025.	1.3	237
17	microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Scientific Reports, 2013, 3, 2535.	1.6	231
18	Molecular Characterization of a Novel Human Hybrid-type Receptor That Binds the α2-Macroglobulin Receptor-associated Protein. Journal of Biological Chemistry, 1996, 271, 31379-31383.	1.6	224

#	Article	IF	CITATIONS
19	Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nature Genetics, 2002, 32, 160-165.	9.4	217
20	miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Molecular Cancer, 2011, 10, 29.	7.9	206
21	Profiling of 2′- <i>O</i> -Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Research, 2016, 44, 7884-7895.	6.5	204
22	MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle, 2011, 10, 1121-1131.	1.3	196
23	SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nature Communications, 2016, 7, 13875.	5.8	170
24	PRDM proteins: Important players in differentiation and disease. BioEssays, 2012, 34, 50-60.	1.2	169
25	The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence. Nature Communications, 2015, 6, 6967.	5.8	161
26	miR-200b mediates post-transcriptional repression of ZFHX1B. Rna, 2007, 13, 1172-1178.	1.6	153
27	Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods, 2007, 43, 162-165.	1.9	152
28	An Illegitimate microRNA Target Site within the 3′ UTR of <i>MDM4</i> Affects Ovarian Cancer Progression and Chemosensitivity. Cancer Research, 2010, 70, 9641-9649.	0.4	152
29	SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Molecular Oncology, 2016, 10, 1266-1282.	2.1	151
30	A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nature Protocols, 2009, 4, 789-798.	5.5	150
31	MicroRNA-145 Targets YES and STAT1 in Colon Cancer Cells. PLoS ONE, 2010, 5, e8836.	1.1	150
32	miR-10 in development and cancer. Cell Death and Differentiation, 2010, 17, 209-214.	5.0	141
33	MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer, 2012, 12, 232.	1.1	128
34	RUNX: A trilogy of cancer genes. Cancer Cell, 2002, 1, 213-215.	7.7	115
35	Emerging connections between RNA and autophagy. Autophagy, 2017, 13, 3-23.	4.3	105
36	The miR-10 microRNA precursor family. RNA Biology, 2011, 8, 728-734.	1.5	99

#	Article	IF	CITATIONS
37	MicroRNA 10a Marks Regulatory T Cells. PLoS ONE, 2012, 7, e36684.	1.1	94
38	microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer. Molecular Cancer, 2012, 11, 71.	7.9	91
39	Experimental identification of microRNA targets. Gene, 2010, 451, 1-5.	1.0	87
40	Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo. Oncogene, 2012, 31, 5081-5089.	2.6	85
41	Increased Cloning Efficiency by Temperature-Cycle Ligation. Nucleic Acids Research, 1996, 24, 800-801.	6.5	81
42	miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2. Oncogene, 2015, 34, 1908-1918.	2.6	72
43	Mutated primer binding sites interacting with different tRNAs allow efficient murine leukemia virus replication. Journal of Virology, 1993, 67, 7125-7130.	1.5	67
44	<scp>elF</scp> 5A is required for autophagy by mediating <scp>ATG</scp> 3Âtranslation. EMBO Reports, 2018, 19, .	2.0	63
45	Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites. Nature Communications, 2019, 10, 4176.	5.8	61
46	A preferred region for recombinational patch repair in the 5' untranslated region of primer binding site-impaired murine leukemia virus vectors. Journal of Virology, 1996, 70, 1439-1447.	1.5	60
47	Loss of miR-10a Activates Lpo and Collaborates with Activated Wnt Signaling in Inducing Intestinal Neoplasia in Female Mice. PLoS Genetics, 2013, 9, e1003913.	1.5	51
48	Regulation of translation by site-specific ribosomal RNA methylation. Nature Structural and Molecular Biology, 2021, 28, 889-899.	3.6	51
49	Emerging roles of Inc <scp>RNA</scp> s in senescence. FEBS Journal, 2016, 283, 2414-2426.	2.2	50
50	Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone. PLoS Genetics, 2012, 8, e1002711.	1.5	48
51	Translational control through ribosome heterogeneity and functional specialization. Trends in Biochemical Sciences, 2022, 47, 66-81.	3.7	48
52	Identification of expressed and conserved human noncoding RNAs. Rna, 2014, 20, 236-251.	1.6	47
53	miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells. PLoS ONE, 2011, 6, e26521.	1.1	46
54	Transcriptional silencing of retroviral vectors. Journal of Biomedical Science, 1996, 3, 365-378.	2.6	42

ANDERS H LUND

#	Article	IF	CITATIONS
55	Sint1, a Common Integration Site in SL3-3-Induced T-Cell Lymphomas, Harbors a Putative Proto-Oncogene with Homology to the Septin Gene Family. Journal of Virology, 2000, 74, 2161-2168.	1.5	42
56	Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Research, 2018, 46, e4-e4.	6.5	40
57	A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nature Communications, 2014, 5, 5840.	5.8	38
58	A high-throughput screen identifies the long non-coding RNA DRAIC as a regulator of autophagy. Oncogene, 2019, 38, 5127-5141.	2.6	37
59	Complementation of a primer binding site-impaired murine leukemia virus-derived retroviral vector by a genetically engineered tRNA-like primer. Journal of Virology, 1997, 71, 1191-1195.	1.5	36
60	Recombination in the 5′ Leader of Murine Leukemia Virus Is Accurate and Influenced by Sequence Identity with a Strong Bias toward the Kissing-Loop Dimerization Region. Journal of Virology, 1998, 72, 6967-6978.	1.5	35
61	Mutations of the Kissing-Loop Dimerization Sequence Influence the Site Specificity of Murine Leukemia Virus Recombination In Vivo. Journal of Virology, 2000, 74, 600-610.	1.5	33
62	Chromatinâ€modifying proteins in cancer. Apmis, 2007, 115, 1060-1089.	0.9	33
63	Insertional Mutagenesis in Mice Deficient for <i>p15Ink4b, p16Ink4a, p21Cip1</i> , and <i>p27Kip1</i> Reveals Cancer Gene Interactions and Correlations with Tumor Phenotypes. Cancer Research, 2010, 70, 520-531.	0.4	31
64	Epigenetic dynamics across the cell cycle. Essays in Biochemistry, 2010, 48, 107-120.	2.1	31
65	Genomic and Proteomic Analyses of Prdm5 Reveal Interactions with Insulator Binding Proteins in Embryonic Stem Cells. Molecular and Cellular Biology, 2013, 33, 4504-4516.	1.1	29
66	The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nature Communications, 2021, 12, 2459.	5.8	27
67	Specific Lipid and Metabolic Profiles of R-CHOP-Resistant Diffuse Large B-Cell Lymphoma Elucidated by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging and in Vivo Imaging. Analytical Chemistry, 2018, 90, 14198-14206.	3.2	26
68	Prdm5 suppresses ApcMin-driven intestinal adenomas and regulates monoacylglycerol lipase expression. Oncogene, 2014, 33, 3342-3350.	2.6	25
69	The Kissing-Loop Motif Is a Preferred Site of 5′ Leader Recombination during Replication of SL3-3 Murine Leukemia Viruses in Mice. Journal of Virology, 1999, 73, 9614-9618.	1.5	22
70	MiRâ€492 impairs the angiogenic potential of endothelial cells. Journal of Cellular and Molecular Medicine, 2013, 17, 1006-1015.	1.6	20
71	Loss of PRDM11 promotes MYC-driven lymphomagenesis. Blood, 2015, 125, 1272-1281.	0.6	18
72	A role for repressive complexes and H3K9 di-methylation in PRDM5-associated brittle cornea syndrome. Human Molecular Genetics, 2015, 24, 6565-6579.	1.4	17

#	Article	IF	CITATIONS
73	Long noncoding RNAs in normal and pathological pluripotency. Seminars in Cell and Developmental Biology, 2017, 65, 1-10.	2.3	16
74	Extended Minus-Strand DNA as Template for R-U5-Mediated Second-Strand Transfer in Recombinational Rescue of Primer Binding Site-Modified Retroviral Vectors. Journal of Virology, 1998, 72, 2519-2525.	1.5	16
75	Sustained Systemic Delivery of Monoclonal Antibodies by Genetically Modified Skin Fibroblasts. Journal of Investigative Dermatology, 2000, 115, 740-745.	0.3	14
76	MicroRNAs—getting the hang of it. Cell Death and Differentiation, 2015, 22, 1-2.	5.0	14
77	Great expectations – Epigenetics and the meandering path from bench to bedside. Biomedical Journal, 2016, 39, 166-176.	1.4	14
78	Replication and Pathogenicity of Primer Binding Site Mutants of SL3-3 Murine Leukemia Viruses. Journal of Virology, 1999, 73, 6117-6122.	1.5	14
79	Targeting RIOK2 ATPase activity leads to decreased protein synthesis and cell death in acute myeloid leukemia. Blood, 2022, 139, 245-255.	0.6	13
80	Alleviation of Murine Leukemia Virus Repression in Embryonic Carcinoma Cells by Genetically Engineered Primer Binding Sites and Artificial tRNA Primers. Virology, 2000, 278, 368-379.	1.1	12
81	Selection of functional tRNA primers and primer binding site sequences from a retroviral combinatorial library: identification of new functional tRNA primers in murine leukemia virus replication. Nucleic Acids Research, 2000, 28, 791-799.	6.5	12
82	Emerging Roles of Polycomb Silencing in X-Inactivation and Stem Cell Maintenance. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 319-326.	2.0	12
83	Production of new organic carbon and its distribution between autotrophic picoplankton, bacteria, extracellular organic carbon and phytoplankton in an upland lake. Freshwater Biology, 1994, 31, 1-18.	1.2	7
84	Transfer of Primer Binding Site-Mutated Simian Immunodeficiency Virus Vectors by Genetically Engineered Artificial and Hybrid tRNA-Like Primers. Journal of Virology, 2001, 75, 4922-4928.	1.5	7
85	Impairment of alternative splice sites defining a novel gammaretroviral exon within gagmodifies the oncogenic properties of Akv murine leukemia virus. Retrovirology, 2007, 4, 46.	0.9	7
86	Target-Cell-Derived tRNA-like Primers for Reverse Transcription Support Retroviral Infection at Low Efficiency. Virology, 2002, 297, 68-77.	1.1	6
87	Identification of a novel human tRNASer(CGA) functional in murine leukemia virus replication. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1492, 264-268.	2.4	5
88	PRDM11 is dispensable for the maintenance and function of hematopoietic stem and progenitor cells. Stem Cell Research, 2013, 11, 1129-1136.	0.3	5
89	Transcriptome dynamics of the microRNA inhibition response. Nucleic Acids Research, 2015, 43, 6207-6221.	6.5	5
90	Repeat RNAs associate with replication forks and post-replicative DNA. Rna, 2020, 26, 1104-1117.	1.6	5

#	Article	IF	CITATIONS
91	Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines. PLoS ONE, 2015, 10, e0134503.	1.1	5
92	The nucleotide sequence of the high-leukemogenic murine retrovirus SL3-3 reveals a patch of mink cell focus forming-like sequences upstream of the ecotropic envelope gene. Archives of Virology, 1999, 144, 2207-2212.	0.9	4
93	Forced recombination of Î -modified murine leukaemia virus-based vectors with murine leukaemia-like and VL30 murine endogenous retroviruses. Journal of General Virology, 1999, 80, 2957-2967.	1.3	4
94	PTBP1 promotes hematopoietic stem cell maintenance and red blood cell development by ensuring sufficient availability of ribosomal constituents. Cell Reports, 2022, 39, 110793.	2.9	3
95	57 miRNA regulation during oncogene-induced senescence. Apmis, 2008, 116, 417-417.	0.9	0
96	57miRNA regulation during oncogene-induced senescence. Apmis, 2008, 116, 417-417.	0.9	0