Berta Cillero Pastor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5940153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytokines, tumor necrosis factor-α and interleukin-1β, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthritis and Cartilage, 2006, 14, 660-669.	0.6	163
2	Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials, 2018, 167, 191-204.	5.7	129
3	Mitochondrial activity is modulated by TNFÎ \pm and IL-1Î 2 in normal human chondrocyte cells. Osteoarthritis and Cartilage, 2006, 14, 1011-1022.	0.6	121
4	Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging for Peptide and Protein Analyses: A Critical Review of On-Tissue Digestion. Journal of Proteome Research, 2014, 13, 325-335.	1.8	103
5	Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis and Rheumatism, 2008, 58, 2409-2419.	6.7	86
6	Differential effects of tumor necrosis factor-α and interleukin-1β on cell death in human articular chondrocytes. Osteoarthritis and Cartilage, 2008, 16, 715-722.	0.6	78
7	Time-of-Flight Secondary Ion Mass Spectrometry-Based Molecular Distribution Distinguishing Healthy and Osteoarthritic Human Cartilage. Analytical Chemistry, 2012, 84, 8909-8916.	3.2	78
8	Derivatization Strategies for the Detection of Triamcinolone Acetonide in Cartilage by Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Analytical Chemistry, 2016, 88, 12051-12059.	3.2	73
9	Enhanced Sensitivity Using MALDI Imaging Coupled with Laser Postionization (MALDI-2) for Pharmaceutical Research. Analytical Chemistry, 2019, 91, 10840-10848.	3.2	67
10	Effect of nitric oxide on mitochondrial activity of human synovial cells. BMC Musculoskeletal Disorders, 2011, 12, 42.	0.8	50
11	Mitochondrial respiratory chain dysfunction modulates metalloproteases -1, -3 and -13 in human normal chondrocytes in culture. BMC Musculoskeletal Disorders, 2013, 14, 235.	0.8	46
12	Matrixâ€assisted laser desorption ionization–imaging mass spectrometry: A new methodology to study human osteoarthritic cartilage. Arthritis and Rheumatism, 2013, 65, 710-720.	6.7	43
13	Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage. Arthritis Research and Therapy, 2014, 16, R110.	1.6	39
14	Faster raster matrix-assisted laser desorption/ionization mass spectrometry imaging of lipids at high lateral resolution. International Journal of Mass Spectrometry, 2019, 437, 38-48.	0.7	36
15	Proteomic analysis by twoâ€dimensional electrophoresis to identify the normal human chondrocyte proteome stimulated by tumor necrosis factor α and interleukinâ€1β. Arthritis and Rheumatism, 2010, 62, 802-814.	6.7	31
16	Trends in mass spectrometry imaging for cardiovascular diseases. Analytical and Bioanalytical Chemistry, 2019, 411, 3709-3720.	1.9	30
17	Anti-apoptotic effect of transforming growth factor-β1 on human articular chondrocytes: role of protein phosphatase 2A. Osteoarthritis and Cartilage, 2008, 16, 1370-1378.	0.6	29
18	Characterization of lipidic markers of chondrogenic differentiation using mass spectrometry imaging. Proteomics, 2015, 15, 702-713.	1.3	29

BERTA CILLERO PASTOR

#	Article	IF	CITATIONS
19	A multimodal mass spectrometry imaging approach for the study of musculoskeletal tissues. International Journal of Mass Spectrometry, 2012, 325-327, 150-160.	0.7	27
20	NF-κB-mediated metabolic remodelling in the inflamed heart in acute viral myocarditis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2579-2589.	1.8	27
21	Rapid Identification of Ischemic Injury in Renal Tissue by Mass-Spectrometry Imaging. Analytical Chemistry, 2019, 91, 3575-3581.	3.2	27
22	Lipid surface modifications increase mesoporous silica nanoparticle labeling properties in mesenchymal stem cells. International Journal of Nanomedicine, 2018, Volume 13, 7711-7725.	3.3	27
23	Specific Lipid and Metabolic Profiles of R-CHOP-Resistant Diffuse Large B-Cell Lymphoma Elucidated by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging and in Vivo Imaging. Analytical Chemistry, 2018, 90, 14198-14206.	3.2	26
24	Differentiation of Mesenchymal Stem Cells under Hypoxia and Normoxia: Lipid Profiles Revealed by Time-of-Flight Secondary Ion Mass Spectrometry and Multivariate Analysis. Analytical Chemistry, 2015, 87, 3981-3988.	3.2	25
25	AntagomiR-103 and -107 Treatment Affects Cardiac Function and Metabolism. Molecular Therapy - Nucleic Acids, 2019, 14, 424-437.	2.3	25
26	Proteomics analysis of human intestinal organoids during hypoxia and reoxygenation as a model to study ischemia-reperfusion injury. Cell Death and Disease, 2021, 12, 95.	2.7	22
27	Mass Spectrometry Spatial-Omics on a Single Conductive Slide. Analytical Chemistry, 2021, 93, 2527-2533.	3.2	22
28	Protein classification and distribution in osteoarthritic human synovial tissue by matrix-assisted laser desorption ionization mass spectrometry imaging. Analytical and Bioanalytical Chemistry, 2015, 407, 2213-2222.	1.9	20
29	MALDI mass spectrometry imaging in rheumatic diseases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 784-794.	1.1	17
30	Oxygen-Dependent Lipid Profiles of Three-Dimensional Cultured Human Chondrocytes Revealed by MALDI-MSI. Analytical Chemistry, 2017, 89, 9438-9444.	3.2	16
31	Identification of a distinct lipidomic profile in the osteoarthritic synovial membrane by mass spectrometry imaging. Osteoarthritis and Cartilage, 2021, 29, 750-761.	0.6	15
32	Comparative proteomic analysis of human mesenchymal stromal cell behavior on calcium phosphate ceramics with different osteoinductive potential. Materials Today Bio, 2020, 7, 100066.	2.6	13
33	Inhibition of Extracellular Cathepsin D Reduces Hepatic Lipid Accumulation and Leads to Mild Changes in Inflammationin NASH Mice. Frontiers in Immunology, 2021, 12, 675535.	2.2	13
34	Dimethylarginine dimethylaminohydrolase 2, a newly identified mitochondrial protein modulating nitric oxide synthesis in normal human chondrocytes. Arthritis and Rheumatism, 2012, 64, 204-212.	6.7	12
35	Spatially resolved endogenous improved metabolite detection in human osteoarthritis cartilage by matrix assisted laser desorption ionization mass spectrometry imaging. Analyst, The, 2019, 144, 5953-5958.	1.7	12
36	Standardized human bone marrow-derived stem cells infusion improves survival and recovery in a rat model of spinal cord injury. Journal of the Neurological Sciences, 2019, 402, 16-29.	0.3	12

BERTA CILLERO PASTOR

#	Article	IF	CITATIONS
37	Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis. Molecular and Cellular Proteomics, 2020, 19, 574-588.	2.5	12
38	Phosphatase-1 and -2A inhibition modulates apoptosis in human osteoarthritis chondrocytes independently of nitric oxide production. Annals of the Rheumatic Diseases, 2005, 64, 1079-1082.	0.5	11
39	Mass Spectrometry-based Biomarkers for Knee Osteoarthritis: A Systematic Review. Expert Review of Proteomics, 2021, 18, 693-706.	1.3	11
40	Protection of the Ovine Fetal Gut against Ureaplasma-Induced Chorioamnionitis: A Potential Role for Plant Sterols. Nutrients, 2019, 11, 968.	1.7	9
41	Spatially resolved proteomics in osteoarthritis: State of the art and new perspectives. Journal of Proteomics, 2020, 215, 103637.	1.2	7
42	Comparative label-free proteomic analysis of equine osteochondrotic chondrocytes. Journal of Proteomics, 2020, 228, 103927.	1.2	5
43	Heterogeneity of Lipid and Protein Cartilage Profiles Associated with Human Osteoarthritis with or without Type 2 Diabetes Mellitus. Journal of Proteome Research, 2021, 20, 2973-2982.	1.8	5
44	INSPIRE: A European training network to foster research and training in cardiovascular safety pharmacology. Journal of Pharmacological and Toxicological Methods, 2020, 105, 106889.	0.3	4
45	Sox9 Determines Translational Capacity During Early Chondrogenic Differentiation of ATDC5 Cells by Regulating Expression of Ribosome Biogenesis Factors and Ribosomal Proteins. Frontiers in Cell and Developmental Biology, 2021, 9, 686096.	1.8	4
46	Oxygen regulates lipid profiles in human primary chondrocyte cultures. Osteoarthritis and Cartilage, 2016, 24, S456-S457.	0.6	3
47	237 THE DYSFUNCTION OF THE MITOCHONDRIAL RESPIRATORY CHAIN REGULATES THE METALLOPROTEINASES EXPRESSION IN HUMAN NORMAL CHONDROCYTES IN CULTURE. Osteoarthritis and Cartilage, 2010, 18, S109.	0.6	2
48	OP0348â€Mass spectrometry imaging analysis of synovium differentiate patients with psoriatic and rheumatoid arthritis. , 2018, , .		2
49	359 DIFFERENTIAL REGULATION OF CELL DEATH IN SYNOVIOCYTES BY TUMOR NECROSIS ALPHA (TNFα) AND INTERLEUKIN 1β (IL-1β): A MECHANISM INDEPENDENTLY OF PROSTAGLANDINS. Osteoarthritis and Cartilage, 2007, 15, C200.	0.6	1
50	Specific peptide distribution in human osteoarthritic synovial membranes reveals different grades of tissue inflammation. Osteoarthritis and Cartilage, 2014, 22, S48-S49.	0.6	1
51	Differential lipid profiles of human mesenchymal stem cells undergoing chondrogenesis by MALDI mass spectrometry imaging. Osteoarthritis and Cartilage, 2014, 22, S49.	0.6	1
52	MALDI-MSI analysis revealed an increment of lipid candidate biomarkers in oa synovium. Osteoarthritis and Cartilage, 2018, 26, S41-S42.	0.6	1
53	Osteoarthritic mesenchymal stem cells undergoing chondrogenesis have altered the glucuronic acid synthesis pathway. Osteoarthritis and Cartilage, 2019, 27, S60-S61.	0.6	1
54	OP0240â€A MULTIMODAL MASS SPECTROMETRY APPROACH REVEALS SPECIFIC CARTILAGE MOLECULAR PROFILES ASSOCIATED TO TYPE 2 DIABETIC PATIENTS. Annals of the Rheumatic Diseases, 2020, 79, 151.2-152.	0.5	1

#	Article	IF	CITATIONS
55	P155 INHIBITION OF MITOCHONDRIAL RESPIRATORYCHAIN ACTIVATES CICLOXYGENASE 2 PROTEIN EXPRESSION AND PROSTAGLANDIN 2 SYNTHESIS IN OSTEOARTHRITIC CHONDROCYTES. Osteoarthritis and Cartilage, 2006, 14, S94.	0.6	0
56	P185 2-DIMENSIONAL ELECTROPHORESIS PROTEOMIC ANALYSIS FOR THE IDENTIFICATION OF HUMAN NORMAL CHONDROCYTE PROTEOME STIMULATED BY TUMOR NECROSIS FACTOR-α AND INTERLEUKIN-1β. Osteoarthritis and Cartilage, 2006, 14, S107.	0.6	0
57	P195 INHIBITION OF MITOGEN KINASE PHOSPHATASE 1 (MKP-1) POTENCIATES CELL DEATH INDUCED BY TUMOR NECROSIS FACTOR \hat{I}_{\pm} (TNF \hat{I}_{\pm}) BUT NOT BY INTERLEUKIN 1 \hat{I}^2 (IL- $1\hat{I}^2$) IN NORMAL HUMAN ARTICULAR CHONDROCYTES. Osteoarthritis and Cartilage, 2006, 14, S111-S112.	0.6	0
58	P200 TGF-β 1 PROTECTS OA, BUT NOT NORMAL, HUMAN CHONDROCYTES FROM Ro 31-8220 AND TNF-α INDUCED APOPTOSIS. Osteoarthritis and Cartilage, 2006, 14, S114.	0.6	0
59	P213 TGF-β 1, ALONG WITH A SWITCHING-OFF PP2A ACTIVITY, PROTECTS NORMAL HUMAN CHONDROCYTES FROM Ro 31-8220 AND TNF-α INDUCED APOPTOSIS. Osteoarthritis and Cartilage, 2006, 14, S119.	0.6	Ο
60	P376 DIFFERENTIAL REGULATION OF CELL DEATHIN OSTEOARTHRITIC (OA)SYNOVIOCYTES BY TUMOR NECROSIS ALPHA (TNFα)AND INTERLEUKIN 1 Î ² (IL-1Î ²). Osteoarthritis and Cartilage, 2006, 14, S200-S201.	0.6	0
61	184 DYSFUNCTION OF MITOCHONDRIAL RESPIRATORY CHAIN IN NORMAL CHONDROCYTE. INFLAMMATION AND MATRIX DEGRADATION. Osteoarthritis and Cartilage, 2007, 15, C109.	0.6	Ο
62	207 TUMOR NECROSIS FACTOR α BUT NOT INTERLEUKIN 1 β POTENCIATE CELL DEATH INDUCED BY Ro 31-8220 PROTEIN KINASE INHIBITOR, IN NORMAL HUMAN ARTICULAR CHONDROCYTES. Osteoarthritis and Cartilage, 2007, 15, C120-C121.), A 0.6	0
63	220 STUDY OF ANTIAPOPTOTIC EFFECT OF TGF-ß1 ON HUMAN ARTICULAR CHONDROCYTES: ROLE OF PHOSPHATASE PP2A. Osteoarthritis and Cartilage, 2007, 15, C126.	0.6	Ο
64	A36 DIFFERENTIAL EFFECTS OF TUMOR NECROSIS FACTOR-α AND INTERLEUKIN-1Î ² IN HUMAN CHONDROCYTES. 2-DE ELECTROPHORESIS APPROACH. Osteoarthritis and Cartilage, 2008, 16, S29.	. A 0.6	0
65	232 CHONDROITIN SULFATE MODULATES THE MITOCHONDRIAL ACTIVITY OF HUMAN ARTICULAR CHONDROCYTES. Osteoarthritis and Cartilage, 2008, 16, S108.	0.6	Ο
66	476 GLUCOSAMINE SULFATE AND CHONDROITIN SULFATE: THEIR EFFECT ON CHONDROCYTE PROTEOME. Osteoarthritis and Cartilage, 2008, 16, S206.	0.6	0
67	055 HYPOXIA CONDITIONS DIFFERENTIALLY MODULATE NORMAL AND OSTEOARTHRITIC HUMAN ARTICULAR CHONDROCYTE PROTEOMES. Osteoarthritis and Cartilage, 2009, 17, S37-S38.	0.6	0
68	478 LEVELS OF SOD2 AND GRP78 ARE MODIFIED BY GLUCOSAMINE AND CHONDROITIN SULPHATE IN HUMAN ARTICULAR CHONDROCYTES: A PHARMACOPROTEOMIC STUDY. Osteoarthritis and Cartilage, 2009, 17, S255-S256.	0.6	0
69	187 IL-1BETA TRANSLOCATES THE PROTEIN DIMETHYLARGININASE 2 (DDAH2) TO THE MITOCHONDRION OF HUMAN NORMAL CHONDROCYTES. Osteoarthritis and Cartilage, 2010, 18, S90.	0.6	0
70	57 IDENTIFICATION AND DIFFERENT LOCALIZATION OF PROTEINS IN THE SUPERFICIAL AND THE DEEP HUMAN OA CARTILAGE BY IMAGING MASS SPECTROMETRY. Osteoarthritis and Cartilage, 2011, 19, S32.	0.6	0
71	Maldi imaging mass spectrometry reveals a different protein distribution in human control and OA cartilage. Osteoarthritis and Cartilage, 2012, 20, S18.	0.6	0
72	Ageing and osteoarthritis markers identified by MALDI imaging mass spectrometry. Osteoarthritis and Cartilage, 2013, 21, S63.	0.6	0

BERTA CILLERO PASTOR

#	Article	IF	CITATIONS
73	AB0769â€Lipid Characterization of Chondrogenic Differentiation Using Maldi Mass Spectrometry Imaging. Annals of the Rheumatic Diseases, 2014, 73, 1059.1-1059.	0.5	0
74	The mammalian target of rapamycin regulates lipid metabolism in osteoarthritic human articular cartilage. Osteoarthritis and Cartilage, 2014, 22, S424.	0.6	0
75	Moving MS(i) closer to surgery: The need to improve pre-, intra and post-operative clinical diagnostics. Toxicology Letters, 2016, 258, S43.	0.4	0
76	High oxygen levels increase mitochondrial lipids in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 2017, 25, S146-S147.	0.6	0
77	SAT0531â€Matrix assisted laser desorption ionization imaging mass spectrometry applied to human osteoarthritis cartilage reveals the intra-tissue metabolic heterogeneity. , 2017, , .		Ο
78	Mitochondrial changes of articular chondrocytes revealed by omics analyses. Osteoarthritis and Cartilage, 2018, 26, S170-S171.	0.6	0
79	OP0078 LINKING LIPID MARKERS TO SYNOVIAL HYPERPLASIA AND VASCULARIZATION IN OSTEOARTHRITIS BY MALDI-MSI. , 2019, , .	(0
80	Lipid profiles in Hoffa's fat pad as biomarker for cartilage regeneration and osteoarthritis development. Osteoarthritis and Cartilage, 2020, 28, S299.	0.6	0
81	Mass spectrometry-based imaging. , 0, , .		0