Santiago de la Moya Cerero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5940058/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural proton transfer rates in pure water according to Marcus theory and TD-DFT computations. Journal of Molecular Liquids, 2022, 357, 119048.	2.3	3
2	BINOL blocks as accessible triplet state modulators in BODIPY dyes. Chemical Communications, 2022, 58, 6385-6388.	2.2	4
3	Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis. Organic Letters, 2022, 24, 3636-3641.	2.4	11
4	lsopinocampheyl-based <i>C</i> -BODIPYs: a model strategy to construct cost-effective boron-chelate emitters of circularly polarized light. Organic Chemistry Frontiers, 2021, 8, 4752-4757.	2.3	4
5	BINOLated aminostyryl BODIPYs: a workable organic molecular platform for NIR circularly polarized luminescence. Chemical Communications, 2021, 57, 5750-5753.	2.2	26
6	Revealing the mechanism of the water autoprotolysis on the basis of Marcus theory and TD-DFT methodology. Journal of Molecular Liquids, 2021, 324, 115092.	2.3	2
7	First Lanthanide Complex for De Novo Phasing in Native Protein Crystallography at 1 Ã Radiation. ACS Applied Bio Materials, 2021, 4, 4575-4581.	2.3	1
8	From photosensitizers to light harvesters adapting the molecular structure in all-BODIPY assemblies. Physical Chemistry Chemical Physics, 2021, 23, 11191-11195.	1.3	3
9	Insight into the Influence of the Chiral Molecular Symmetry on the Chiroptics of Fluorescent BINOL-Based Boron Chelates. , 2021, 3, .		Ο
10	Insight into the Influence of the Chiral Molecular Symmetry on the Chiroptics of Fluorescent BINOL-Based Boron Chelates. Chemistry Proceedings, 2021, 3, .	0.1	2
11	Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors. , 2021, 8, .		Ο
12	Exploring New Mitochondria-Targetable Theragnostic styrylBODIPYs. , 2021, 8, .		1
13	BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis. Chemical Communications, 2020, 56, 940-943.	2.2	38
14	Manipulating Chargeâ€Transfer States in BODIPYs: A Model Strategy to Rapidly Develop Photodynamic Theragnostic Agents. Chemistry - A European Journal, 2020, 26, 601-605.	1.7	20
15	Multichromophoric COO-BODIPYs: an advantageous design for the development of energy transfer and electron transfer systems. Chemical Communications, 2020, 56, 13025-13028.	2.2	8
16	BCl3-Activated Synthesis of COO-BODIPY Laser Dyes: General Scope and High Yields under Mild Conditions. Journal of Organic Chemistry, 2020, 85, 4594-4601.	1.7	20
17	Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 2020, 96, 458-477.	1.3	92

BODIPY Based Emitters of Circularly Polarized Luminescence. , 2020, , 117-149.

3

#	Article	IF	CITATIONS
19	Alkynyl N-BODIPYs as Reactive Intermediates for the Development of Dyes for Biophotonics. Chemistry Proceedings, 2020, 3, .	0.1	0
20	Modulating ICT emission: a new strategy to manipulate the CPL sign in chiral emitters. Chemical Communications, 2019, 55, 1631-1634.	2.2	59
21	BOPHYs versus BODIPYs: A comparison of their performance as effective multi-function organic dyes. Dyes and Pigments, 2019, 170, 107662.	2.0	21
22	Chiral Microneedles from an Achiral Bis(boron dipyrromethene): Spontaneous Mirror Symmetry Breaking Leading to a Promising Photoluminescent Organic Material. Langmuir, 2019, 35, 5021-5028.	1.6	6
23	Exploring N-BODIPYs as Privileged Scaffolds to Build Off/On Fluorescent Sensors by PET. Proceedings (mdpi), 2019, 41, .	0.2	2
24	C*-BODIPYs: Exploring a New Strategy to Transfer Chirality towards BODIPY Chiroptics. Proceedings (mdpi), 2019, 41, .	0.2	2
25	Chiral Organic Dyes Endowed with Circularly Polarized Laser Emission. Journal of Physical Chemistry C, 2017, 121, 5287-5292.	1.5	116
26	Controlling Vilsmeier-Haack processes in meso-methylBODIPYs: A new way to modulate finely photophysical properties in boron dipyrromethenes. Dyes and Pigments, 2017, 141, 286-298.	2.0	12
27	Speeding up heterogeneous catalysis with an improved highly reusable catalyst for the preparation of enantioenriched secondary alcohols. Reactive and Functional Polymers, 2017, 113, 23-30.	2.0	3
28	Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation. Chemistry - A European Journal, 2017, 23, 4837-4848.	1.7	87
29	<i>N</i> â€BODIPYs Come into Play: Smart Dyes for Photonic Materials. Chemistry - A European Journal, 2017, 23, 9383-9390.	1.7	30
30	A versatile fluorescent molecular probe endowed with singlet oxygen generation under white-light photosensitization. Dyes and Pigments, 2017, 142, 77-87.	2.0	14
31	Circularly polarized laser emission in optically active organic dye solutions. Physical Chemistry Chemical Physics, 2017, 19, 22088-22093.	1.3	37
32	Modulation of ICT probability in bi(polyarene)-based O-BODIPYs: towards the development of low-cost bright arene-BODIPY dyads. Dalton Transactions, 2017, 46, 11830-11839.	1.6	22
33	Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 8805-8808.	1.7	58
34	Circularly polarized laser emission induced in isotropic and achiral dye systems. Scientific Reports, 2016, 6, 28740.	1.6	18
35	Exploring the Application of the Negishi Reaction of HaloBODIPYs: Generality, Regioselectivity, and Synthetic Utility in the Development of BODIPY Laser Dyes. Journal of Organic Chemistry, 2016, 81, 3700-3710.	1.7	38
36	About the Existence of Organic Oxonium Ions as Mechanistic Intermediates in Water Solution. Journal of Physical Chemistry A, 2016, 120, 7045-7050.	1.1	4

#	Article	IF	CITATIONS
37	Push–pull flexibly-bridged bis(haloBODIPYs): solvent and spacer switchable red emission. Dalton Transactions, 2016, 45, 11839-11848.	1.6	23
38	Circularly Polarized Luminescence from Simple Organic Molecules. Chemistry - A European Journal, 2015, 21, 13488-13500.	1.7	773
39	An asymmetric BODIPY triad with panchromatic absorption for high-performance red-edge laser emission. Chemical Communications, 2015, 51, 11382-11385.	2.2	23
40	Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 8239-8247.	1.3	56
41	Preparation of dipyrrins from F-BODIPYs by treatment with methanesulfonic acids. RSC Advances, 2015, 5, 68676-68680.	1.7	9
42	Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes. Chemical Communications, 2014, 50, 12765-12767.	2.2	30
43	Negishi reaction in BODIPY dyes. Unprecedented alkylation by palladium-catalyzed C–C coupling in boron dipyrromethene derivatives. RSC Advances, 2014, 4, 19210-19213.	1.7	32
44	Selective Lateral Lithiation of Methyl BODIPYs: Synthesis, Photophysics, and Electrochemistry of New <i>Meso</i> Derivatives. Organic Letters, 2014, 16, 4364-4367.	2.4	32
45	Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral <i>O-</i> BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores. Journal of the American Chemical Society, 2014, 136, 3346-3349.	6.6	325
46	Electron ionization-induced fragmentation of bridgehead-substituted norbornan-2-ones derived from fenchone. International Journal of Mass Spectrometry, 2013, 334, 49-57.	0.7	0
47	Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region. Chemical Communications, 2013, 49, 11641.	2.2	42
48	The Mechanism of Hydrolysis of Aryldiazonium Ions Revisited: Marcus Theory vs. Canonical Variational Transition State Theory. European Journal of Organic Chemistry, 2013, 2013, 6098-6107.	1.2	17
49	Dual stereoselection in the addition of diethylzinc to benzaldehyde by using highly structurally close ligands. Chirality, 2012, 24, 255-261.	1.3	7
50	Cheap and Longâ€Life Reusable Polymer for Asymmetric Organozinc Catalysis Based on Camphorâ€Derived Hydroxyamides. Chirality, 2012, 24, 771-777.	1.3	3
51	Water-trapping of unstable carbocations taking place into the inverted region of the Marcus equation. First experimental and computational evidence. Tetrahedron, 2012, 68, 2892-2898.	1.0	3
52	Unexpected efficiency of nonâ€ <i>C</i> ₂ â€symmetric bis(hydroxyamide)â€based zincâ€chelate catalysts. Chirality, 2011, 23, 523-526.	1.3	7
53	Electron ionization mass spectral studies of bridgeheadâ€substituted norbornanâ€2â€ones: camphor derivatives. Rapid Communications in Mass Spectrometry, 2011, 25, 395-409.	0.7	4
54	Stereoelectronic control in the solvolysis of spiroepoxidic 1-norbornyl triflates: unexpected reactivity in 3-bromomethyl derivatives. Tetrahedron Letters, 2011, 52, 1762-1765.	0.7	2

#	Article	IF	CITATIONS
55	Different influence of polyoxygenation on the catalytic activity of amido- versus amino-isoborneols. Arkivoc, 2011, 2011, 359-367.	0.3	0
56	Ketopinic Acid Derived Bis(hydroxy amides) as Cheap, Chiral Ligands for the Enantioselective Ethylation of Aromatic Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 1717-1727.	1.2	13
57	The role of the C(2) configuration and methyl substitution on the catalytic activity of novel 2,3,3―and 2,7,7â€ŧrimethylâ€substituted γâ€aminonorbornanâ€2â€ols. Chirality, 2010, 22, 778-787.	1.3	2
58	Polyoxygenated ketopinic-acid-derived γ-amino alcohols in the enantioselective diethylzinc addition to benzaldehyde. Tetrahedron: Asymmetry, 2009, 20, 2655-2657.	1.8	10
59	N/N/O versus N/O/O and N/O amino isoborneols in the enantioselective ethylation of benzaldehyde. Tetrahedron: Asymmetry, 2008, 19, 269-272.	1.8	13
60	Hydroxyamides versus amino alcohols in the enantioselective addition of diethylzinc to benzaldehyde. Tetrahedron: Asymmetry, 2008, 19, 2003-2006.	1.8	19
61	Hydroxyamide-catalyzed enantioselective addition of diethylzinc to benzaldehyde in the absence of titanium. Tetrahedron: Asymmetry, 2008, 19, 646-650.	1.8	16
62	Solvent and Stereoelectronic Effects on the Solvolysis Rates of Oxaspirocyclopropanated 1-Norbornyl Triflates and Related Bridgehead Derivatives. Journal of Organic Chemistry, 2008, 73, 6607-6614.	1.7	5
63	First Efficient Synthesis of Enantiopure Homoketopinic Acid. Letters in Organic Chemistry, 2007, 4, 123-125.	0.2	2
64	Surprising obtention of an enantiopure eight-membered cyclic ether from camphor. Tetrahedron Letters, 2007, 48, 5185-5188.	0.7	10
65	Unexpected reactivity of 1-amine-2-methylenenorbornane hydrochlorides with m-CPBA. Tetrahedron Letters, 2007, 48, 5981-5983.	0.7	8
66	The role of conformational flexibility on the catalytic activity of norbornane-derived β-, γ- and δ-amino alcohols. Tetrahedron: Asymmetry, 2007, 18, 742-749.	1.8	27
67	Palladium(II)-catalyzed ring expansion of a 1-alkenyl cyclopentanol. Tetrahedron Letters, 2005, 46, 3509-3511.	0.7	5
68	A new type of anomalous ozonolysis in strained allylic bicycloalkan-1-ols. Tetrahedron Letters, 2005, 46, 5157-5159.	0.7	6
69	Enantiospecific access to 10-N-substituted camphors. Tetrahedron, 2005, 61, 599-601.	1.0	10
70	Understanding the catalytic role of flexible chiral δ-amino alcohols: the 1-(2-aminoethyl)norbornan-2-ol model. Tetrahedron, 2005, 61, 3055-3064.	1.0	19
71	Electron ionization mass spectral studies of bridgehead 7,7-dimethylnorbornane-based β -amino alcohols. Rapid Communications in Mass Spectrometry, 2005, 19, 1005-1010.	0.7	5
72	Evidence for Different Types of Water Participation in the Solvolysis of 1-Adamantyl,tert-Butyl, and Methyl Chlorides from Density Functional Theory Computations. Journal of Organic Chemistry, 2005, 70, 10238-10246.	1.7	28

#	Article	IF	CITATIONS
73	Enantiospecific Synthesis of 9,10-Dihalocamphors. Synlett, 2004, 2004, 134-136.	1.0	5
74	2-exo- versus 2-endo-Hydroxyl in δ-amino norbornan-2-ol-based catalysts: investigating the role of the C(2) configuration in the asymmetric induction. Tetrahedron: Asymmetry, 2004, 15, 753-756.	1.8	12
75	Intramolecular-activation evidence for the unexpected Beckmann fragmentation of C(1)-substituted-7-bromonorbornane-2-ones. Tetrahedron, 2004, 60, 9447-9451.	1.0	7
76	Enantiospecific Access to Various C(9),C(10)-Disubstituted Camphors:  Scope and Limitations. Journal of Organic Chemistry, 2004, 69, 7348-7351.	1.7	10
77	Synthesis of 7-anti-Bromo-3,3-dimethyl-2-oxonorbornane-1-carboxylic Acid: A New Chiral Source from the Chiral Pool ChemInform, 2003, 34, no.	0.1	Ο
78	First access to enantiopure C(7)-substituted fenchones: new norbornane-based chiral materials from the chiral pool. Tetrahedron: Asymmetry, 2003, 14, 1607-1609.	1.8	3
79	Synthesis and catalytic activity of 10-(aminomethyl)isoborneol-based catalysts: the role of the C(2)-group on the asymmetric induction. Tetrahedron: Asymmetry, 2003, 14, 1959-1963.	1.8	19
80	C(10)-Substituted Camphors and Fenchones by Electrophilic Treatment of 2-Methylenenorbornan-1-ols:Â Enantiospecificity, Scope, and Limitations. Journal of Organic Chemistry, 2003, 68, 1451-1458.	1.7	27
81	Self-recognition and hydrogen bonding by polycyclic bridgehead monoalcohols. Organic and Biomolecular Chemistry, 2003, 1, 700.	1.5	9
82	Comprehensive Study of the Methyl Effect on the Solvolysis Rates of Bridgehead Derivatives. Journal of the American Chemical Society, 2002, 124, 6676-6685.	6.6	10
83	Unexpected Bromine-Assisted Beckmann Fragmentation of a C1-Electron-Acceptor Substituted 7-Bromonorbornan-2-one Upon Hydroxylamine Treatment. European Journal of Organic Chemistry, 2002, 2002, 781-783.	1.2	5
84	Unexpected Hydrolysis of a C(7)-Oxo-Substituted 2-Oxonorborn-1-yl Triflate: Norbornane-Ring Expansion versus Norbornane-Ring Contraction. European Journal of Organic Chemistry, 2002, 2002, 3731-3733.	1.2	5
85	Bridgehead-norbornane-derived β-amino alcohol catalysts: structural factors influencing the chirality transfer. Tetrahedron: Asymmetry, 2002, 13, 1-4.	1.8	30
86	A novel enantiospecific route to 10-hydroxyfenchone: a convenient intermediate for C(10)-O-substituted fenchones. Tetrahedron: Asymmetry, 2002, 12, 3325-3327.	1.8	10
87	A new enantiospecific synthetic procedure to the taxoid-intermediate 10-methylenecamphor, and 10-methylenefenchone. Tetrahedron: Asymmetry, 2002, 13, 17-19.	1.8	14
88	The role of the substitution pattern on the catalytic activity of chiral bridgehead norbornane-derived β-amino alcohols. Tetrahedron: Asymmetry, 2002, 13, 1457-1460.	1.8	16
89	Synthesis of 7-anti-bromo-3,3-dimethyl-2-oxonorbornane-1-carboxylic acid: a new chiral source from the chiral pool. Tetrahedron: Asymmetry, 2002, 13, 1837-1840.	1.8	3
90	Straightforward synthesis of (1 S)-10-dimethylaminomethylcamphor: an enantiospecific model procedure to C10 C-substituted camphor-derived chiral sources. Tetrahedron Letters, 2002, 43, 1183-1185.	0.7	9

#	Article	IF	CITATIONS
91	First efficient preparation of enantiopure 10-bromofenchone: the key intermediate to C10-substituted fenchone-derived chiral sources. Tetrahedron Letters, 2001, 42, 6539-6541.	0.7	14
92	From natural camphor to (1 R ,2 S)-2-chloromethyl-3-oxocyclopentanecarboxylic acid: a stereocontrolled approach to enantiopure sarkomycin. Tetrahedron Letters, 2001, 42, 7795-7799.	0.7	20
93	Chemoselective reaction of spiro[oxirane-2,2′-norborn]-1′-yl triflates with nucleophiles: a new case of HSAB-principle dependence. Tetrahedron Letters, 2001, 42, 8293-8296.	0.7	11
94	A new convenient procedure for the preparation of enantiopure C10-S- and C10-Se-substituted camphor-derived sulfides and selenides. Tetrahedron Letters, 2001, 42, 5017-5019.	0.7	16
95	A novel route to enantiopure cyclopentene carboxylic acids based on 3-endo-bromocamphor. Tetrahedron: Asymmetry, 2001, 12, 189-191.	1.8	9
96	A new highly efficient synthetic route to enantiopure 10-bromocamphor. Tetrahedron: Asymmetry, 2000, 11, 3059-3062.	1.8	20
97	A new straightforward preparation of enantiopure 10-hydroxycamphor. Tetrahedron: Asymmetry, 2000, 11, 4437-4440.	1.8	13
98	Electron impact fragmentation patterns of 3,3-dimethyl-1,2-norbornane derivatives. , 1999, 13, 1472-1476.		7
99	An Experimental and Computational Study about the Effect of a Spirocyclopropane Group on the Solvolysis Rates of Bridgehead Triflates‖. Journal of Organic Chemistry, 1999, 64, 5611-5619.	1.7	13
100	About the timing of Wagner-Meerwein and Nametkin rearrangements, 6,2-hydride shift, proton elimination and cation trapping in 2-norbornyl carbocations. Tetrahedron, 1998, 54, 4607-4614.	1.0	19
101	Synthesis of enantiopure norbornane derivatives. Effect of bridgehead substituent on the π-facial selectivity of the reduction of 2-norbornanones and their oximes. Tetrahedron: Asymmetry, 1998, 9, 1737-1745.	1.8	29
102	Synthesis of methyl (1R,2S)-α,α-dimethyl-3-oxo-2-pentylcyclopentaneacetate. A model procedure for the preparation of chiral jasmonoids and prostaglandins. Tetrahedron: Asymmetry, 1997, 8, 849-852.	1.8	6
103	Chiral Pyridinophanes as Hydrogenâ€Bonding Supramolecular Building Blocks. Liebigs Annalen, 1997, 1997, 1997, 1221-1225.	0.8	2
104	A facile synthesis of new homochiral β-amino alcohols with norbornane framework. Tetrahedron: Asymmetry, 1996, 7, 1257-1260.	1.8	16
105	Synthesis of homochiral 3-substituted cyclopentanones from 2-norbornanones. Tetrahedron: Asymmetry, 1996, 7, 2177-2180.	1.8	20
106	Synthesis of substituted 1-norbornylamines with antiviral activity Journal of Medicinal Chemistry, 1995, 38, 4474-4477.	2.9	32
107	A New Entry to Homochiral Bridgehead 1-Acyl and 1-Hydroxyalkyl Bicyclo[2.1.1]hexanes. Synlett, 1994, 1994, 563-564.	1.0	4
108	Synthesis of homochiral 1,2-diols from (â^')-fenchone and (+)-camphor. Tetrahedron: Asymmetry, 1994, 5, 1373-1376.	1.8	17

#	Article	IF	CITATIONS
109	Synthesis of homochiral cyclopentane derivatives by Beckmann fragmentation of 1-substituted 2-norbornanones. Tetrahedron: Asymmetry, 1994, 5, 949-954.	1.8	15
110	A facile synthesis of homochiral 1-norbornanecarboxylic acids and 1-norbornanecarbonitriles. Tetrahedron: Asymmetry, 1994, 5, 1599-1603.	1.8	10
111	Enantiospecific synthesis of substituted bicyclo[2.1.1]hexane-1-carboxylic acids and esters. Tetrahedron: Asymmetry, 1993, 4, 2333-2334.	1.8	16
112	A new procedure for formylation of less active aromatics. Journal of the Chemical Society Chemical Communications, 1990, , 1571-1572.	2.0	51