Sike Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5939756/publications.pdf

Version: 2024-02-01

	279798	254184
1,959	23	43
citations	h-index	g-index
70	70	1751
70	70	1751
docs citations	times ranked	citing authors
	citations 70	1,959 23 citations h-index 70 70

#	Article	IF	CITATIONS
1	Structural Investigation of the Synthesized Few-Layer Graphene from Coal under Microwave. Nanomaterials, 2022, 12, 57.	4.1	8
2	A phase change calcium looping thermochemical energy storage system based on CaCO3/CaO-CaCl2. Energy Conversion and Management, 2021, 227, 113503.	9.2	12
3	Ice nucleation of water droplet containing solid particles under weak ultrasonic vibration. Ultrasonics Sonochemistry, 2021, 70, 105301.	8.2	5
4	CFD Investigation of Flame and Pressure Wave Propagation through Variable Concentration Methane-Air Mixtures in a Tube Closed at One End. Combustion Science and Technology, 2021, 193, 1203-1230.	2.3	8
5	Gas Transition: Renewable Hydrogen's Future in Eastern Australia's Energy Networks. Energies, 2021, 14, 3968.	3.1	7
6	Microwave-Assisted Coal-Derived Few-Layer Graphene as an Anode Material for Lithium-Ion Batteries. Materials, 2021, 14, 6468.	2.9	4
7	CFD Modeling of Flame Jump across Air Gap between Evasé and Capture Duct for Ventilation Air Methane Abatement. Processes, 2021, 9, 2278.	2.8	2
8	Effect of Tube Size on Flame and Pressure Wave Propagation in a Tube Closed at One End: A Numerical Study. Combustion Science and Technology, 2020, 192, 1731-1753.	2.3	12
9	Capture and Mitigation of Fugitive Methane: Examining the Characteristics of Methane Explosions in an Explosion Chamber Connected to a Venting Duct. Energy & Energy & 2020, 34, 645-654.	5.1	9
10	Techno-economic analysis of an integrated liquid air and thermochemical energy storage system. Energy Conversion and Management, 2020, 205, 112341.	9.2	117
11	The impact of carbonate salts on char formation and gas evolution during the slow pyrolysis of biomass, cellulose, and lignin. Sustainable Energy and Fuels, 2020, 4, 5987-6003.	4.9	18
12	Thermochemical Conversion of Biomass in the Presence of Molten Alkali-Metal Carbonates under Reducing Environments of N2 and CO2. Energies, 2020, 13, 5395.	3.1	8
13	Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs. Sustainability, 2020, 12, 8554.	3.2	7
14	Kinetics and Mechanism of Catalytic Oxidation of NO in Coal Combustion Flue Gas over Co-Doped Mn–Ti Oxide Catalyst. Energy & Fuels, 2020, 34, 6052-6058.	5.1	12
15	Comparative Study of Data Mining Techniques for Predicting Explosions in Coal Mines. , 2020, , .		1
16	Numerical investigation of heterogeneous nucleation of water vapour on PM ₁₀ for particulate abatement. Canadian Journal of Chemical Engineering, 2019, 97, 930-939.	1.7	12
17	A unique phase change redox cycle using CuO/Cu2O for utility-scale energy storage. Energy Conversion and Management, 2019, 188, 366-380.	9.2	13
18	The Significance of the Adaptive Thermal Comfort Limits on the Air-Conditioning Loads in a Temperate Climate. Sustainability, 2019, 11, 328.	3.2	32

#	Article	lF	Citations
19	Flame Propagation and Reflections of Pressure Waves through Fixed Beds of RTO Devices: A CFD Study. Industrial & Devices: A CFD Study. 100 Stud	3.7	10
20	Stone Dust Looping for Ventilation Air Methane Abatement: A 1 m $<$ sup $>$ 3 $<$ /sup $>$ /s Pilot-Scale Study. Energy & amp; Fuels, 2019, 33, 12568-12577.	5.1	3
21	Systematic Study of Pressure Fluctuation in the Riser of a Dual Inter-Connected Circulating Fluidized Bed: Using Single and Binary Particle Species. Processes, 2019, 7, 890.	2.8	9
22	Thermodynamic analysis of a novel hybrid thermochemical-compressed air energy storage system powered by wind, solar and/or off-peak electricity. Energy Conversion and Management, 2019, 180, 1268-1280.	9.2	52
23	Estimation of the carbonation reaction kinetic parameters for dilute methane and carbon dioxide conditions in a calcium looping process. Environmental Progress and Sustainable Energy, 2018, 37, 1312-1318.	2.3	3
24	Characterization of Biochars Derived from Pyrolysis of Biomass and Calcium Oxide Mixtures. Energy & En	5.1	33
25	Flame deflagration in side-on vented detonation tubes: A large scale study. Journal of Hazardous Materials, 2018, 345, 38-47.	12.4	38
26	An Experimental Investigation of the Catalytic Activity of Natural Calcium-Rich Minerals and a Novel Dual-Supported CaOâ€"Ca ₁₂ Al ₁₄ O ₃₃ /Al ₂ O ₃ Catalyst for Biotar Steam Reforming. Energy & Support Suppo	5.1	11
27	The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption. Sustainability, 2018, 10, 3609.	3.2	39
28	A review on high-temperature thermochemical energy storage based on metal oxides redox cycle. Energy Conversion and Management, 2018, 168, 421-453.	9.2	140
29	A novel slag carbon arrestor process for energy recovery in steelmaking industry. Fuel Processing Technology, 2017, 155, 124-133.	7.2	4
30	Impact of suspended coal dusts on methane deflagration properties in a largeâ€scale straight duct. Journal of Hazardous Materials, 2017, 338, 334-342.	12.4	37
31	The effects of coal dust concentrations and particle sizes on the minimum autoâ€ignition temperature of a coal dust cloud. Fire and Materials, 2017, 41, 908-915.	2.0	14
32	Derivation of Kinetics and Design Parameters for a Carbonator Reactor in a Greenhouse Calcium Looping Process. Energy Technology, 2017, 5, 644-655.	3.8	1
33	A simple model for predicting solid concentration distribution in binaryâ€solid liquid fluidized beds. AICHE Journal, 2017, 63, 469-484.	3.6	5
34	Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system. Journal of Hazardous Materials, 2017, 339, 301-309.	12.4	7
35	The importance of air movement in warmer temperatures: a novel SET* house case study. Architectural Science Review, 2017, 60, 225-238.	2.2	5
36	The Significance of Temperature Based Approach Over the Energy Based Approaches in the Buildings Thermal Assessment. Environmental and Climate Technologies, 2017, 19, 39-50.	1.4	29

#	Article	IF	Citations
37	Numerical Study of the Orientation of Cylindrical Particles in a Circulating Fluidized Bed. Industrial & Engineering Chemistry Research, 2016, 55, 12806-12817.	3.7	12
38	Experimental Study on Fundamental Mechanisms of Ferro-Fluidics for an Electromagnetic Energy Harvester. Industrial & Engineering Chemistry Research, 2016, 55, 12491-12501.	3.7	9
39	Integration Options and Economic Analysis of an Integrated Chemical Looping Air Separation Process for Oxy-fuel Combustion. Energy & Energy & 2016, 30, 1741-1755.	5.1	37
40	Formation of persistent organic pollutants from 2,4,5-trichlorothiophenol combustion: a density functional theory investigation. Journal of Molecular Modeling, 2016, 22, 128.	1.8	8
41	Influence of Controlled Aggregation on Thermal Conductivity of Nanofluids. Journal of Heat Transfer, 2016, 138, .	2.1	45
42	Novel Calcium-Looping-Based Biomass-Integrated Gasification Combined Cycle: Thermodynamic Modeling and Experimental Study. Energy & Energy & 1730-1740.	5.1	19
43	Formation of benzofuran and chlorobenzofuran from 1,3-dichloropropene: A quantum chemical investigation. International Journal of Quantum Chemistry, 2015, 115, 1739-1745.	2.0	2
44	Contribution of thermal resistance and thermal mass to the energy demand of walling systems / Beitrag des Wämedurchlasswiderstandes und der thermischen Masse zum Energiebedarf von Wandsystemen. Mauerwerk, 2015, 19, 64-73.	0.1	2
45	A Novel Hybrid Chemical-Looping Oxy Combustor Process for the Combustion of Solid and Gaseous Fuels: Thermodynamic Analysis. Energy & Ener	5.1	12
46	Techno-Economic Assessment of Integrated Chemical Looping Air Separation for Oxy-Fuel Combustion: An Australian Case Study. Energy & Samp; Fuels, 2015, 29, 2074-2088.	5.1	44
47	Equilibrium thermodynamic analyses of methanol production via a novel Chemical Looping Carbon Arrestor process. Energy Conversion and Management, 2015, 96, 392-402.	9.2	15
48	Investigations into Physicochemical Changes in Thermal Coals during Low-Temperature Ionic Liquid Treatment. Energy & Ene	5.1	29
49	Quantum Chemical Molecular Dynamics Simulations of 1,3-Dichloropropene Combustion. Journal of Physical Chemistry A, 2015, 119, 9307-9316.	2.5	10
50	A statistical study on the combined effects of wall thermal mass and thermal resistance on internal air temperatures. Journal of Building Physics, 2015, 38, 419-443.	2.4	8
51	Influence of void fraction calculation on fidelity of CFDâ€DEM simulation of gasâ€solid bubbling fluidized beds. AICHE Journal, 2014, 60, 2000-2018.	3.6	228
52	Analysis on Chemical Reaction Kinetics of CuO/SiO ₂ Oxygen Carriers for Chemical Looping Air Separation. Energy & Samp; Fuels, 2014, 28, 173-182.	5.1	62
53	Reactivity of Al ₂ O ₃ - or SiO ₂ -Supported Cu-, Mn-, and Co-Based Oxygen Carriers for Chemical Looping Air Separation. Energy & Samp; Fuels, 2014, 28, 1284-1294.	5.1	81
54	Sulfidation of Iron-Based Sorbents Supported on Activated Chars during the Desulfurization of Coke Oven Gases: Effects of Mo and Ce Addition. Energy & Energy & 2014, 28, 2481-2489.	5.1	16

#	Article	IF	Citations
55	Experimental and mathematical analysis of fuel penetration through unconsolidated porous media. Fire and Materials, 2013, 37, 160-170.	2.0	5
56	Redox Characteristics of Fe–Ni/SiO ₂ Bimetallic Oxygen Carriers in CO under Conditions Pertinent to Chemical Looping Combustion. Energy & Energy & 2012, 26, 75-84.	5.1	31
57	Thermodynamic Assessment of a Novel Concept for Integrated Gasification Chemical Looping Combustion of Solid Fuels. Energy & Samp; Fuels, 2012, 26, 287-295.	5.1	34
58	Selection of Suitable Oxygen Carriers for Chemical Looping Air Separation: A Thermodynamic Approach. Energy & Separation: A Thermodynamic Approach. Energy & Separation: A Thermodynamic Approach.	5.1	120
59	Application of Concrete and Demolition Waste as CO ₂ Sorbent in Chemical Looping Gasification of Biomass. Energy & Sorbent in Chemical Looping Gasification of Biomass. Energy & Sorbent in Chemical Looping Gasification of Biomass.	5.1	31
60	A response to Murshed et al., J Nanopart Res (2010) 12:2007–2010. Journal of Nanoparticle Research, 2011, 13, 4395-4396.	1.9	1
61	Flame spread over porous sand beds wetted with propenol. Fire and Materials, 2011, 35, 61-70.	2.0	12
62	Application of Chemical Looping Concept for Air Separation at High Temperatures < sup > †< /sup > . Energy & amp; Fuels, 2010, 24, 190-198.	5.1	185
63	Comments on the effect of liquid layering on the thermal conductivity of nanofluids. Journal of Nanoparticle Research, 2009, 11, 1501-1507.	1.9	13
64	The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels. Fire and Materials, 2006, 30, 1-34.	2.0	106
65	Experimental and numerical analysis of sawdust-char combustion reactivity in a drop tube reactor. Combustion Science and Technology, 2003, 175, 793-823.	2.3	47
66	Short Communication: application of a surrogate material in assessing the impact of porosity on re-ignition of wood-based materials. Fire and Materials, 2002, 26, 99-101.	2.0	0
67	Short Communication: a methodology for evaluating the effect of drying on the heat of combustion of wood-based materials. Fire and Materials, 2000, 24, 165-166.	2.0	0
68	Short communication: effects of char oxidation on re-ignition characteristics of wood-based materials. Fire and Materials, 2000, 24, 303-304.	2.0	2
69	A PROCESS FOR DISPOSAL OF HALON 1301 (CBrF3). Chemical Engineering Communications, 1999, 176, 195-200.	2.6	3
70	The interplay between ternary molten carbonate and biomaterials during pressurized slow pyrolysis. Reaction Chemistry and Engineering, 0, , .	3.7	3