Charles Kendall Stover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5939702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405, 962-966.	27.8	971
2	<i>Staphylococcus aureus</i> genetic loci impacting growth and survival in multiple infection environments. Molecular Microbiology, 1998, 30, 393-404.	2.5	272
3	A multifunctional bispecific antibody protects against <i>Pseudomonas aeruginosa</i> . Science Translational Medicine, 2014, 6, 262ra155.	12.4	228
4	Systemic and mucosal immunity induced by BCG vector expressing outer-surface protein A of Borrelia burgdorferi. Nature, 1994, 372, 552-555.	27.8	176
5	Differential Expression and Roles of Staphylococcus aureus Virulence Determinants during Colonization and Disease. MBio, 2015, 6, e02272-14.	4.1	152
6	Identification of broadly protective human antibodies to <i>Pseudomonas aeruginosa</i> exopolysaccharide Psl by phenotypic screening. Journal of Experimental Medicine, 2012, 209, 1273-1287.	8.5	142
7	A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1737-1742.	7.1	136
8	Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host and Microbe, 2019, 25, 526-536.e4.	11.0	129
9	Potent, Novel in Vitro Inhibitors of thePseudomonasaeruginosaDeacetylase LpxC. Journal of Medicinal Chemistry, 2002, 45, 3112-3129.	6.4	115
10	A Novel Anti-PcrV Antibody Providing Enhanced Protection against Pseudomonas aeruginosa in Multiple Animal Infection Models. Antimicrobial Agents and Chemotherapy, 2014, 58, 4384-4391.	3.2	98
11	<i>Staphylococcus aureus</i> α toxin potentiates opportunistic bacterial lung infections. Science Translational Medicine, 2016, 8, 329ra31.	12.4	93
12	Molecular Validation of LpxC as an Antibacterial Drug Target in <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2006, 50, 2178-2184.	3.2	87
13	Discovery of Antibacterial Biotin Carboxylase Inhibitors by Virtual Screening and Fragment-Based Approaches. ACS Chemical Biology, 2009, 4, 473-483.	3.4	84
14	Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. International Journal of Medical Microbiology, 2005, 295, 237-242.	3.6	77
15	Identification and Characterization of the PutP Proline Permease That Contributes to In Vivo Survival of <i>Staphylococcus aureus</i> in Animal Models. Infection and Immunity, 1998, 66, 567-572.	2.2	76
16	Staphylococcus aureus Alpha Toxin Suppresses Effective Innate and Adaptive Immune Responses in a Murine Dermonecrosis Model. PLoS ONE, 2013, 8, e75103.	2.5	73
17	S.Âaureus Evades Macrophage Killing through NLRP3-Dependent Effects on Mitochondrial Trafficking. Cell Reports, 2018, 22, 2431-2441.	6.4	71
18	Mouse model of hematogenous implant-related <i>Staphylococcus aureus</i> biofilm infection reveals therapeutic targets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, F5094-F5102	7.1	70

#	Article	IF	CITATIONS
19	Immune stealth-driven O2 serotype prevalence and potential for therapeutic antibodies against multidrug resistant Klebsiella pneumoniae. Nature Communications, 2017, 8, 1991.	12.8	70
20	Development of a liquid chromatography/mass spectrometry-based drug accumulation assay in Pseudomonas aeruginosa. Analytical Biochemistry, 2009, 385, 321-325.	2.4	57
21	Loss of hemolysin expression inStaphylococcus aureus agrmutants correlates with selective survival during mixed infections in murine abscesses and wounds. FEMS Immunology and Medical Microbiology, 2003, 38, 23-28.	2.7	56
22	Neutralizing Alpha-Toxin Accelerates Healing of Staphylococcus aureus-Infected Wounds in Nondiabetic and Diabetic Mice. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	51
23	Impact of the High-Affinity Proline Permease Gene (<i>putP</i>) on the Virulence of <i>Staphylococcus aureus</i> in Experimental Endocarditis. Infection and Immunity, 1999, 67, 740-744.	2.2	51
24	Target-Agnostic Identification of Functional Monoclonal Antibodies Against <i>Klebsiella pneumoniae</i> Multimeric MrkA Fimbrial Subunit. Journal of Infectious Diseases, 2016, 213, 1800-1808.	4.0	47
25	Anti-Alpha-Toxin Monoclonal Antibody and Antibiotic Combination Therapy Improves Disease Outcome and Accelerates Healing in a Staphylococcus aureus Dermonecrosis Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 299-309.	3.2	45
26	An engineered bispecific DNA-encoded IgG antibody protects against Pseudomonas aeruginosa in a pneumonia challenge model. Nature Communications, 2017, 8, 637.	12.8	45
27	Critical Role of Alpha-Toxin and Protective Effects of Its Neutralization by a Human Antibody in Acute Bacterial Skin and Skin Structure Infections. Antimicrobial Agents and Chemotherapy, 2016, 60, 5640-5648.	3.2	38
28	Anti-Psl Targeting of Pseudomonas aeruginosa Biofilms for Neutrophil-Mediated Disruption. Scientific Reports, 2017, 7, 16065.	3.3	34
29	S. aureus blocks efferocytosis of neutrophils by macrophages through the activity of its virulence factor alpha toxin. Scientific Reports, 2016, 6, 35466.	3.3	33
30	Anti-LPS antibodies protect against Klebsiella pneumoniae by empowering neutrophil-mediated clearance without neutralizing TLR4. JCI Insight, 2017, 2, .	5.0	29
31	<i>Pseudomonas aeruginosa</i> Bacteremic Patients Exhibit Nonprotective Antibody Titers Against Therapeutic Antibody Targets PcrV and Psl Exopolysaccharide. Journal of Infectious Diseases, 2016, 213, 640-648.	4.0	25
32	Association of Biofilm Formation, Psl Exopolysaccharide Expression, and Clinical Outcomes in <i>Pseudomonas aeruginosa</i> Keratitis. JAMA Ophthalmology, 2016, 134, 383.	2.5	25
33	Mouse model of Gram-negative prosthetic joint infection reveals therapeutic targets. JCI Insight, 2018, 3, .	5.0	25
34	Epitope Mapping of Monoclonal Antibodies using Synthetic Oligosaccharides Uncovers Novel Aspects of Immune Recognition of the Psl Exopolysaccharide of <i>Pseudomonas aeruginosa</i> . Chemistry - A European Journal, 2013, 19, 17425-17431.	3.3	19
35	Treatment Efficacy of MEDI3902 in Pseudomonas aeruginosa Bloodstream Infection and Acute Pneumonia Rabbit Models. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	19
36	Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties. MAbs, 2017, 9, 240-256.	5.2	16

#	Article	IF	CITATIONS
37	Enhancement of antibody functions through Fc multiplications. MAbs, 2017, 9, 393-403.	5.2	13
38	New Strategies Targeting Virulence Factors of Staphylococcus aureus and Pseudomonas aeruginosa. Seminars in Respiratory and Critical Care Medicine, 2017, 38, 346-358.	2.1	11
39	Anti-MrkA Monoclonal Antibodies Reveal Distinct Structural and Antigenic Features of MrkA. PLoS ONE, 2017, 12, e0170529.	2.5	11
40	Chapter 17. Recent Advances in the Chemistry and Biology of Anti-mycobacterial Agents. Annual Reports in Medicinal Chemistry, 1996, , 161-170.	0.9	10
41	The Neutrophilic Response to <i>Pseudomonas</i> Damages the Airway Barrier, Promoting Infection by <i>Klebsiella pneumoniae</i> . American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 745-756.	2.9	10