Mark P Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5939407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Molecular Cell, 2016, 64, 982-992.	4.5	405
2	A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Research, 2008, 18, 706-716.	2.4	320
3	Energy Metabolic Reprogramming in the Hypertrophied and Early Stage Failing Heart. Circulation: Heart Failure, 2014, 7, 1022-1031.	1.6	233
4	The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3: Genes, Genomes, Genetics, 2016, 6, 263-279.	0.8	199
5	Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. Cell Reports, 2017, 18, 1739-1750.	2.9	143
6	Dietary Fructose and Microbiota-Derived Short-Chain Fatty Acids Promote Bacteriophage Production in the Gut Symbiont Lactobacillus reuteri. Cell Host and Microbe, 2019, 25, 273-284.e6.	5.1	126
7	Causal graphical models in systems genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Annals of Applied Statistics, 2010, 4, 320-339.	0.5	94
8	RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations. Genetics, 2014, 198, 59-73.	1.2	82
9	FoxM1 Is Up-Regulated by Obesity and Stimulates β-Cell Proliferation. Molecular Endocrinology, 2010, 24, 1822-1834.	3.7	81
10	Integrative Analysis of a Cross-Loci Regulation Network Identifies App as a Gene Regulating Insulin Secretion from Pancreatic Islets. PLoS Genetics, 2012, 8, e1003107.	1.5	76
11	Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genetics, 2019, 15, e1008073.	1.5	75
12	Positional Cloning of a Type 2 Diabetes Quantitative Trait Locus; Tomosyn-2, a Negative Regulator of Insulin Secretion. PLoS Genetics, 2011, 7, e1002323.	1.5	67
13	Physiological Insights Gained from Gene Expression Analysis in Obesity and Diabetes. Annual Review of Nutrition, 2010, 30, 341-364.	4.3	62
14	Gene loci associated with insulin secretion in islets from nondiabetic mice. Journal of Clinical Investigation, 2019, 129, 4419-4432.	3.9	60
15	NeuCode Proteomics Reveals Bap1 Regulation of Metabolism. Cell Reports, 2016, 16, 583-595.	2.9	57
16	Genetic Drivers of Pancreatic Islet Function. Genetics, 2018, 209, 335-356.	1.2	54
17	Induction of miR-132 and miR-212 Expression by Glucagon-Like Peptide 1 (GLP-1) in Rodent and Human Pancreatic β-Cells. Molecular Endocrinology, 2015, 29, 1243-1253.	3.7	48
18	Downregulation of Carnitine Acyl-Carnitine Translocase by miRNAs 132 and 212 Amplifies Glucose-Stimulated Insulin Secretion. Diabetes, 2014, 63, 3805-3814.	0.3	45

MARK P KELLER

#	Article	IF	CITATIONS
19	Global Identification of Protein Post-translational Modifications in a Single-Pass Database Search. Journal of Proteome Research, 2015, 14, 4714-4720.	1.8	43
20	Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. Journal of Biological Chemistry, 2018, 293, 5860-5877.	1.6	43
21	A large-scale genome–lipid association map guides lipid identification. Nature Metabolism, 2020, 2, 1149-1162.	5.1	43
22	β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. Journal of Clinical Investigation, 2022, 132, .	3.9	42
23	The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genetics, 2016, 12, e1006466.	1.5	40
24	Modeling Causality for Pairs of Phenotypes in System Genetics. Genetics, 2013, 193, 1003-1013.	1.2	38
25	Increased transport of acetyl oA into the endoplasmic reticulum causes a progeriaâ€like phenotype. Aging Cell, 2018, 17, e12820.	3.0	38
26	FAM13A affects body fat distribution and adipocyte function. Nature Communications, 2020, 11, 1465.	5.8	36
27	Nat1 Deficiency Is Associated with Mitochondrial Dysfunction and Exercise Intolerance in Mice. Cell Reports, 2016, 17, 527-540.	2.9	35
28	Histone chaperone ASF1B promotes human β -cell proliferation via recruitment of histone H3.3. Cell Cycle, 2016, 15, 3191-3202.	1.3	34
29	Targeted Mass Spectrometry Approach Enabled Discovery of <i>O-</i> Glycosylated Insulin and Related Signaling Peptides in Mouse and Human Pancreatic Islets. Analytical Chemistry, 2017, 89, 9184-9191.	3.2	34
30	Intracellular lipid metabolism impairs \hat{I}^2 cell compensation during diet-induced obesity. Journal of Clinical Investigation, 2018, 128, 1178-1189.	3.9	33
31	Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation. BMC Genomics, 2010, 11, 473.	1.2	29
32	The Dissection of Expression Quantitative Trait Locus Hotspots. Genetics, 2016, 202, 1563-1574.	1.2	29
33	Identification and Correction of Sample Mix-Ups in Expression Genetic Data: A Case Study. G3: Genes, Genomes, Genetics, 2015, 5, 2177-2186.	0.8	25
34	Genetic Architectures of Quantitative Variation in RNA Editing Pathways. Genetics, 2016, 202, 787-798.	1.2	25
35	Phosphorylation and Degradation of Tomosyn-2 De-represses Insulin Secretion. Journal of Biological Chemistry, 2014, 289, 25276-25286.	1.6	23
36	Secretion of Recombinant Interleukin-22 by Engineered Lactobacillus reuteri Reduces Fatty Liver Disease in a Mouse Model of Diet-Induced Obesity. MSphere, 2020, 5, .	1.3	23

MARK P KELLER

#	Article	IF	CITATIONS
37	Identification of the Bile Acid Transporter <i>Slco1a6</i> as a Candidate Gene That Broadly Affects Gene Expression in Mouse Pancreatic Islets. Genetics, 2015, 201, 1253-1262.	1.2	22
38	Exploiting Prophage-Mediated Lysis for Biotherapeutic Release by <i>Lactobacillus reuteri</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	17
39	Perilipin 5 and liver fatty acid binding protein function to restore quiescence in mouse hepatic stellate cells. Journal of Lipid Research, 2018, 59, 416-428.	2.0	16
40	Identification of direct transcriptional targets of NFATC2 that promote β cell proliferation. Journal of Clinical Investigation, 2021, 131, .	3.9	15
41	Proteomic pathways to metabolic disease and type 2 diabetes in the pancreatic islet. IScience, 2021, 24, 103099.	1.9	12
42	Reversal of hypertriglyceridemia in diabetic BTBR ob/ob mice does not prevent nephropathy. Laboratory Investigation, 2021, 101, 935-941.	1.7	8
43	QTLViewer: an interactive webtool for genetic analysis in the Collaborative Cross and Diversity Outbred mouse populations. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	8
44	From methylene bridged diindole to carbonyl linked benzimidazoleindole: Development of potent and metabolically stable PCSK9 modulators. European Journal of Medicinal Chemistry, 2020, 206, 112678.	2.6	6
45	Coding variants identified in patients with diabetes alter PICK1 BAR domain function in insulin granule biogenesis. Journal of Clinical Investigation, 2022, 132, .	3.9	5
46	Application of 2D IR Bioimaging: Hyperspectral Images of Formalin-Fixed Pancreatic Tissues and Observation of Slow Protein Degradation. Journal of Physical Chemistry B, 2021, 125, 9517-9525.	1.2	4
47	β Cell–specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight, 2022, 7,	2.3	4
48	INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants. Genome Biology, 2021, 22, 241.	3.8	3
49	Identification of sample mix-ups and mixtures in microbiome data in Diversity Outbred mice. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	2
50	MetaNetwork Enhances Biological Insights from Quantitative Proteomics Differences by Combining Clustering and Enrichment Analyses. Journal of Proteome Research, 2022, 21, 410-419.	1.8	2
51	Statistical Methods for Latent Class Quantitative Trait Loci Mapping. Genetics, 2017, 206, 1309-1317.	1.2	0
52	Hunk, a Serine/Threonine Protein Kinase, Regulates Insulin Secretion from Pancreatic Islets. FASEB Journal, 2018, 32, 670.15.	0.2	0