Xiangchao Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5939296/publications.pdf

Version: 2024-02-01

36 1,632 18 33 papers citations h-index g-index

36 36 36 1095 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 978-989.	4.9	374
2	An Integrated Framework for the Spatio–Temporal–Spectral Fusion of Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 7135-7148.	6.3	242
3	Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Information Fusion, 2019, 46, 102-113.	19.1	214
4	Low-Rank and Sparse Representation for Hyperspectral Image Processing: A review. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 10-43.	9.6	94
5	A Large-Scale Benchmark Data Set for Evaluating Pansharpening Performance: Overview and Implementation. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 18-52.	9.6	92
6	Hyperspectral Image Super-Resolution by Spectral Mixture Analysis and Spatial–Spectral Group Sparsity. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 1250-1254.	3.1	72
7	Pansharpening for Cloud-Contaminated Very High-Resolution Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 2840-2854.	6.3	54
8	An Integrated Method for Reconstructing Daily MODIS Land Surface Temperature Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 1026-1040.	4.9	42
9	MLR-DBPFN: A Multi-Scale Low Rank Deep Back Projection Fusion Network for Anti-Noise Hyperspectral and Multispectral Image Fusion. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	41
10	A SAR-to-Optical Image Translation Method Based on Conditional Generation Adversarial Network (cGAN). IEEE Access, 2020, 8, 60338-60343.	4.2	38
11	Fusing China GF-5 Hyperspectral Data with GF-1, GF-2 and Sentinel-2A Multispectral Data: Which Methods Should Be Used?. Remote Sensing, 2020, 12, 882.	4.0	36
12	A Band Divide-and-Conquer Multispectral and Hyperspectral Image Fusion Method. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60 , $1-13$.	6.3	35
13	Mapping Coastal Wetlands Using Transformer in Transformer Deep Network on China ZY1-02D Hyperspectral Satellite Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 3891-3903.	4.9	32
14	CGMDRNet: Cross-Guided Modality Difference Reduction Network for RGB-T Salient Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 6308-6323.	8.3	29
15	Vision Transformer for Pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	28
16	A Dual Global–Local Attention Network for Hyperspectral Band Selection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	22
17	Generalized Linear Spectral Mixing Model for Spatial–Temporal–Spectral Fusion. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	21
18	A Locally Optimized Model for Hyperspectral and Multispectral Images Fusion. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	6.3	20

#	Article	IF	Citations
19	A Multiscale Spectral Features Graph Fusion Method for Hyperspectral Band Selection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	6.3	18
20	No-Reference Quality Assessment for Pansharpened Images via Opinion-Unaware Learning. IEEE Access, 2019, 7, 40388-40401.	4.2	14
21	Collaborative Coupled Hyperspectral Unmixing Based Subpixel Change Detection for Analyzing Coastal Wetlands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8208-8224.	4.9	13
22	A unified framework for spatio-temporal-spectral fusion of remote sensing images. , 2015, , .		12
23	A Blind Full-Resolution Quality Evaluation Method for Pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	12
24	A Label Similarity Probability Filter for Hyperspectral Image Postclassification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6897-6905.	4.9	12
25	Spatio–Temporal–Spectral Collaborative Learning for Spatio–Temporal Fusion with Land Cover Changes. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	11
26	VSOIQE: A Novel Viewport-Based Stitched 360° Omnidirectional Image Quality Evaluator. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 6557-6572.	8.3	10
27	Monocular and Binocular Interactions Oriented Deformable Convolutional Networks for Blind Quality Assessment of Stereoscopic Omnidirectional Images. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 3407-3421.	8.3	9
28	PSTAF-GAN: Progressive Spatio-Temporal Attention Fusion Method Based on Generative Adversarial Network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	8
29	Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images. IEEE Access, 2019, 7, 106295-106306.	4.2	6
30	A large-scale remote sensing database for subjective and objective quality assessment of pansharpened images. Journal of Visual Communication and Image Representation, 2020, 73, 102947.	2.8	5
31	Multiscale Low-Rank Spatial Features for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	5
32	SARF: A Simple, Adjustable, and Robust Fusion Method. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	5
33	A Blind Full Resolution Assessment Method for Pansharpened Images Based on Multistream Collaborative Learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	4
34	Investigating GF-5 Hyperspectral and GF-1 Multispectral Data Fusion Methods for Multitemporal Change Analysis. , 2019, , .		1
35	Building Stereoscopic Zoomer via Global and Local Warping Optimization. IEEE Transactions on Computational Imaging, 2020, 6, 1622-1635.	4.4	1
36	Fine Classification Comparsion of GF-1 GF-5 and Landsat-8 Remote Sensing Data Based on Optimized Sample Selection Method. , 2019, , .		0