Seungjin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5939085/publications.pdf

Version: 2024-02-01

361296 345118 1,760 37 20 36 citations h-index g-index papers 38 38 38 1456 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Disintegrable nâ€Type Electroactive Terpolymers for Highâ€Performance, Transient Organic Electronics. Advanced Functional Materials, 2022, 32, 2106977.	7.8	19
2	Importance of Highâ€Electron Mobility in Polymer Acceptors for Efficient Allâ€Polymer Solar Cells: Combined Engineering of Backbone Building Unit and Regioregularity. Advanced Functional Materials, 2022, 32, 2108508.	7.8	41
3	Synergistic Engineering of Side Chains and Backbone Regioregularity of Polymer Acceptors for Highâ€Performance Allâ€Polymer Solar Cells with 15.1% Efficiency. Advanced Energy Materials, 2022, 12, 2103239.	10.2	46
4	Highâ€Performance <i>n</i> â€Type Organic Electrochemical Transistors Enabled by Aqueous Solution Processing of Amphiphilicityâ€Driven Polymer Assembly. Advanced Functional Materials, 2022, 32, 2111950.	7.8	46
5	Revisiting carbazole-based polymer donors for efficient and thermally stable polymer solar cells: structural utility of coplanar π-bridged spacers. Journal of Materials Chemistry A, 2022, 10, 9408-9418.	5.2	12
6	Effect of the Selective Halogenation of Small Molecule Acceptors on the Blend Morphology and Voltage Loss of Highâ€Performance Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	27
7	Aqueous-processable, naphthalene diimide-based polymers for eco-friendly fabrication of high-performance, n-type organic electrolyte-gated transistors. Science China Chemistry, 2022, 65, 973-978.	4.2	4
8	A Novel Energy-Conscious Access Point ($<$ i>>e $<$ i>AP) System With Cross-Layer Design in Wi-Fi Networks for Reliable IoT Services. IEEE Access, 2022, 10, 61228-61248.	2.6	4
9	Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	67
10	Sequentially Fluorinated Polythiophene Donors for Highâ€Performance Organic Solar Cells with 16.4% Efficiency. Advanced Energy Materials, 2022, 12, .	10.2	22
11	Ester-functionalized, wide-bandgap derivatives of PM7 for simultaneous enhancement of photovoltaic performance and mechanical robustness of all-polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 2775-2783.	5.2	23
12	Aniline-based hole transporting materials for high-performance organic solar cells with enhanced ambient stability. Journal of Materials Chemistry A, 2021, 9, 15787-15797.	5.2	9
13	Cyanoâ€Functionalized Quinoxalineâ€Based Polymer Acceptors for Allâ€Polymer Solar Cells and Organic Transistors. ChemSusChem, 2021, 14, 3520-3527.	3.6	20
14	Electron Transport Layers Based on Oligo(ethylene glycol)-Incorporated Polymers Enabling Reproducible Fabrication of High-Performance Organic Solar Cells. Macromolecules, 2021, 54, 7102-7112.	2.2	20
15	Influence of Drying Conditions on Device Performances of Antisolvent-Assisted Roll-to-Roll Slot Die-Coated Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7611-7621.	2.5	22
16	Effects of the Selective Alkoxy Side Chain Position in Quinoxaline-Based Polymer Acceptors on the Performance of All-Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47817-47825.	4.0	11
17	Polymer Donors with Temperature-Insensitive, Strong Aggregation Properties Enabling Additive-Free, Processing Temperature-Tolerant High-Performance All-Polymer Solar Cells. Macromolecules, 2021, 54, 53-63.	2.2	32
18	Solid-State Organic Electrolyte-Gated Transistors Based on Doping-Controlled Polymer Composites with a Confined Two-Dimensional Channel in Dry Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1065-1075.	4.0	13

#	Article	IF	Citations
19	Green solvent-processed, high-performance organic solar cells achieved by outer side-chain selection of selenophene-incorporated Y-series acceptors. Journal of Materials Chemistry A, 2021, 9, 24622-24630.	5.2	34
20	Origin of the High Donor–Acceptor Composition Tolerance in Device Performance and Mechanical Robustness of All-Polymer Solar Cells. Chemistry of Materials, 2020, 32, 582-594.	3.2	68
21	C ₇₀ -based aqueous-soluble fullerene for the water composition-tolerant performance of eco-friendly polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 15224-15233.	2.7	11
22	Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. ACS Nano, 2020, 14, 14493-14527.	7.3	150
23	Importance of Optimal Crystallinity and Hole Mobility of BDTâ€Based Polymer Donor for Simultaneous Enhancements of ⟨i⟩V⟨ i⟩⟨sub⟩oc⟨ sub⟩, ⟨i⟩J⟨ i⟩⟨sub⟩sc⟨ sub⟩, and FF in Efficient Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2005787.	7.8	55
24	Impact of Chlorination Patterns of Naphthalenediimide-Based Polymers on Aggregated Structure, Crystallinity, and Device Performance of All-Polymer Solar Cells and Organic Transistors. ACS Applied Materials & Device Performance of All-Polymer Solar Cells and Organic Transistors. ACS Applied	4.0	29
25	Volatilizable and cost-effective quinone-based solid additives for improving photovoltaic performance and morphological stability in non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13049-13058.	5.2	41
26	Naphthalene Diimide-Based Terpolymers with Controlled Crystalline Properties for Producing High Electron Mobility and Optimal Blend Morphology in All-Polymer Solar Cells. Chemistry of Materials, 2020, 32, 2572-2582.	3.2	64
27	Triad-type, multi-functional compatibilizers for enhancing efficiency, stability and mechanical robustness of polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13522-13531.	5.2	16
28	Importance of device structure and interlayer design in storage stability of naphthalene diimide-based all-polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 3735-3745.	5.2	12
29	Elucidating Roles of Polymer Donor Aggregation in All-Polymer and Non-Fullerene Small-Molecule–Polymer Solar Cells. Chemistry of Materials, 2020, 32, 3585-3596.	3.2	38
30	Aqueous-Soluble Naphthalene Diimide-Based Polymer Acceptors for Efficient and Air-Stable All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45038-45047.	4.0	42
31	Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chemical Reviews, 2019, 119, 8028-8086.	23.0	566
32	Comparative Study of the Mechanical Properties of All-Polymer and Fullereneâ€"Polymer Solar Cells: The Importance of Polymer Acceptors for High Fracture Resistance. Chemistry of Materials, 2018, 30, 2102-2111.	3.2	79
33	Effect of the acceptor types on the fracture behavior of polymer solar cells., 2018,,.		0
34	Polymer Solar Cells: Low-Temperature Processable High-Performance D-A-Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices (Adv. Energy Mater. 30/2018). Advanced Energy Materials, 2018, 8, 1870132.	10.2	2
35	Lowâ€Temperature Processable Highâ€Performance D–Aâ€Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices. Advanced Energy Materials, 2018, 8, 1801601.	10.2	31
36	Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene–polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22170-22179.	5.2	71

SEUNGJIN LEE

#	Article	IF	CITATIONS
37	Impact of highly crystalline, isoindigo-based small-molecular additives for enhancing the performance of all-polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 21291-21299.	5.2	13