Li Shuai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5939058/publications.pdf

Version: 2024-02-01

		687363	888059
16	2,273	13	17
papers	2,273 citations	h-index	g-index
18	18	18	2629
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354, 329-333.	12.6	944
2	Organic Solvent Effects in Biomass Conversion Reactions. ChemSusChem, 2016, 9, 133-155.	6.8	320
3	A mild biomass pretreatment using \hat{I}^3 -valerolactone for concentrated sugar production. Green Chemistry, 2016, 18, 937-943.	9.0	184
4	An "ideal lignin―facilitates full biomass utilization. Science Advances, 2018, 4, eaau2968.	10.3	184
5	Towards high-yield lignin monomer production. Green Chemistry, 2017, 19, 3752-3758.	9.0	121
6	From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass. ACS Central Science, 2018, 4, 701-708.	11.3	116
7	Selective C–C Bond Cleavage of Methylene-Linked Lignin Models and Kraft Lignin. ACS Catalysis, 2018, 8, 6507-6512.	11.2	86
8	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie - International Edition, 2020, 59, 11704-11716.	13.8	82
9	Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnology for Biofuels, 2019, 12, 51.	6.2	79
10	The influence of interunit carbon–carbon linkages during lignin upgrading. Current Opinion in Green and Sustainable Chemistry, 2016, 2, 59-63.	5.9	58
11	Nanomechanics of Lignin–Cellulase Interactions in Aqueous Solutions. Biomacromolecules, 2021, 22, 2033-2042.	5.4	32
12	In-situ oxidation/reduction facilitates one-pot conversion of lignocellulosic biomass to bulk chemicals in alkaline solution. Chemical Engineering Journal, 2022, 429, 132365.	12.7	21
13	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie, 2020, 132, 11800-11812.	2.0	19
14	Bioinspired Cellulase-Mimetic Solid Acid Catalysts for Cellulose Hydrolysis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 770027.	4.1	8
15	Using poly(N-Vinylcaprolactam) to Improve the Enzymatic Hydrolysis Efficiency of Phenylsulfonic Acid-Pretreated Bamboo. Frontiers in Bioengineering and Biotechnology, 2021, 9, 804456.	4.1	4
16	Production of Hydroxymethylfurfural Derivatives From Furfural Derivatives via Hydroxymethylation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851668.	4.1	3