Paulo Cezar Bastianello Campagnol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938943/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of oligosaccharides in meat processing and preservation. Critical Reviews in Food Science and Nutrition, 2023, 63, 10947-10958.	5.4	5
2	Active edible coatings and films with Mediterranean herbs to improve food shelf-life. Critical Reviews in Food Science and Nutrition, 2022, 62, 2391-2403.	5.4	21
3	Viability and stability evaluation of Lactobacillus casei LCO3 co-encapsulated with red onion (Allium) Tj ETQq1	0.784314 2.5	rg&T /Overloo
4	Check-all-that-apply method to develop low-sodium sausages: A case study. , 2022, , 121-135.		0
5	Effect of ultrasound application on the growth of S. xylosus inoculated in by-products from the poultry industry. Current Research in Food Science, 2022, 5, 345-350.	2.7	4
6	Replacement of saturated fat by healthy oils to improve nutritional quality of meat products. , 2022, , 461-487.		0
7	Fatty Acids. , 2022, , 41-52.		2
8	Use of Healthy Emulsion Hydrogels to Improve the Quality of Pork Burgers. Foods, 2022, 11, 596.	1.9	21
9	Can the Introduction of Different Olive Cakes Affect the Carcass, Meat and Fat Quality of BÃsaro Pork?. Foods, 2022, 11, 1650.	1.9	6
10	Production of Collagens and Protein Hydrolysates with Antimicrobial and Antioxidant Activity from Sheep Slaughter By-Products. Antioxidants, 2022, 11, 1173.	2.2	6
11	Green technologies as a strategy to reduce NaCl and phosphate in meat products: an overview. Current Opinion in Food Science, 2021, 40, 1-5.	4.1	57
12	Microencapsulation of healthier oils: an efficient strategy to improve the lipid profile of meat products. Current Opinion in Food Science, 2021, 40, 6-12.	4.1	46
13	Inclusion of seaweeds as healthy approach to formulate new low-salt meat products. Current Opinion in Food Science, 2021, 40, 20-25.	4.1	48
14	Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Current Opinion in Food Science, 2021, 40, 40-45.	4.1	105
15	Low-sodium dry-cured rabbit leg: A novel meat product with healthier properties. Meat Science, 2021, 173, 108372.	2.7	26
16	Effect of NaCl Partial Replacement by Chloride Salts on Physicochemical Characteristics, Volatile Compounds and Sensorial Properties of Dry-Cured Deer Cecina. Foods, 2021, 10, 669.	1.9	17
17	Effects of ultrasonic-assisted cooking on the volatile compounds, oxidative stability, and sensory quality of mortadella. Ultrasonics Sonochemistry, 2021, 72, 105443.	3.8	9
18	Inulin, KCL, and Flavor Enhancers: An Efficient Combination to Produce Prebiotic and Low-Sodium Burgers. Frontiers in Animal Science, 2021, 2, .	0.8	1

#	Article	IF	CITATIONS
19	Sodium reformulation and its impact on oxidative stability and sensory quality of dry-cured rabbit legs. Meat Science, 2021, 177, 108485.	2.7	2
20	Jundiá Fish Skin (<i>Rhamdia quelen</i>): An Unexplored By-product with Great Potential to Be Used as a Novel Source of Collagen. Journal of Aquatic Food Product Technology, 2021, 30, 1002-1016.	0.6	2
21	Combined effect of ultrasound and basic electrolyzed water on the microbiological and oxidative profile of low-sodium mortadellas. International Journal of Food Microbiology, 2021, 353, 109310.	2.1	7
22	Lipid oxidation and sensory characterization of Omega-3 rich buffalo burgers enriched with chlorogenic acids from the mate (llex paraguariensis) tree harvesting residues. Meat Science, 2021, 179, 108534.	2.7	8
23	Ultrasound and basic electrolyzed water: A green approach to reduce the technological defects caused by NaCl reduction in meat emulsions. Ultrasonics Sonochemistry, 2020, 61, 104830.	3.8	18
24	Combined application of electrolysed water and ultrasound to improve the sanitation of knives in the meat industry. International Journal of Food Science and Technology, 2020, 55, 1136-1144.	1.3	8
25	Is it possible to reduce the cooking time of mortadellas using ultrasound without affecting their oxidative and microbiological quality?. Meat Science, 2020, 159, 107947.	2.7	30
26	Application of arginine and histidine to improve the technological and sensory properties of low-fat and low-sodium bologna-type sausages produced with high levels of KCl. Meat Science, 2020, 159, 107939.	2.7	32
27	Banana inflorescences: A cheap raw material with great potential to be used as a natural antioxidant in meat products. Meat Science, 2020, 161, 107991.	2.7	32
28	Emulsion gels based on pork skin and dietary fibers as animal fat replacers in meat emulsions: An adding value strategy to byproducts. LWT - Food Science and Technology, 2020, 120, 108895.	2.5	34
29	Ultrasound and low-levels of NaCl replacers: A successful combination to produce low-phosphate and low-sodium meat emulsions. Meat Science, 2020, 170, 108244.	2.7	27
30	Characterization of olive oil flavored with Brazilian pink pepper (Schinus terebinthifolius Raddi) in different maceration processes. Food Research International, 2020, 137, 109593.	2.9	14
31	Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage. Foods, 2020, 9, 1487.	1.9	35
32	Physicochemical Composition and Nutritional Properties of Deer Burger Enhanced with Healthier Oils. Foods, 2020, 9, 571.	1.9	53
33	Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages. Ultrasonics Sonochemistry, 2020, 67, 105161.	3.8	39
34	Effect of partial replacement of meat by carrot on physicochemical properties and fatty acid profile of fresh turkey sausages: a chemometric approach. Journal of the Science of Food and Agriculture, 2020, 100, 4968-4977.	1.7	13
35	Microencapsulation of healthier oils to enhance the physicochemical and nutritional properties of deer p¢t©. LWT - Food Science and Technology, 2020, 125, 109223.	2.5	65
36	Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage. Food Chemistry, 2020, 319, 126553.	4.2	24

#	Article	IF	CITATIONS
37	Influence of the Inclusion of Chestnut (Castanea sativa Miller) in the Finishing Diet and Cooking Technique on the Physicochemical Parameters and Volatile Profile of Biceps femoris Muscle. Foods, 2020, 9, 754.	1.9	7
38	Jabuticaba peel extract obtained by microwave hydrodiffusion and gravity extraction: A green strategy to improve the oxidative and sensory stability of beef burgers produced with healthier oils. Meat Science, 2020, 170, 108230.	2.7	28
39	Effect of replacing backfat with vegetable oils during the shelf-life of cooked lamb sausages. LWT - Food Science and Technology, 2020, 122, 109052.	2.5	71
40	Hydrogelled emulsion from chia and linseed oils: A promising strategy to produce low-fat burgers with a healthier lipid profile. Meat Science, 2019, 156, 174-182.	2.7	126
41	Ultrasound and slightly acid electrolyzed water application: An efficient combination to reduce the bacterial counts of chicken breast during pre-chilling. International Journal of Food Microbiology, 2019, 301, 27-33.	2.1	53
42	Application of pulsed electric fields in meat and fish processing industries: An overview. Food Research International, 2019, 123, 95-105.	2.9	186
43	Ultrasound: A new approach to reduce phosphate content of meat emulsions. Meat Science, 2019, 152, 88-95.	2.7	66
44	Letter to the editor. Meat Science, 2019, 151, 98.	2.7	0
45	Reducing 50% sodium chloride in healthier jerked beef: An efficient design to ensure suitable stability, technological and sensory properties. Meat Science, 2019, 152, 49-57.	2.7	57
46	Effect of fat replacement by chitosan and golden flaxseed flour (wholemeal and defatted) on the quality of hamburgers. LWT - Food Science and Technology, 2019, 102, 403-410.	2.5	37
47	Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Science, 2019, 149, 141-148.	2.7	123
48	Volatile compounds and sensory profile of burgers with 50% fat replacement by microparticles of chia oil enriched with rosemary. Meat Science, 2019, 148, 164-170.	2.7	55
49	Ultrasound: A promising technology to improve the technological quality of meat emulsions. Meat Science, 2019, 148, 150-155.	2.7	58
50	Extraction of Valuable Compounds from Meat By-Products. , 2019, , 55-90.		3
51	Application of ultrasound in chicken breast during chilling by immersion promotes a fast and uniform cooling. Food Research International, 2018, 109, 59-64.	2.9	10
52	Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International, 2018, 106, 363-373.	2.9	45
53	Oxidative stability of burgers containing chia oil microparticles enriched with rosemary by green-extraction techniques. Meat Science, 2018, 146, 147-153.	2.7	41
54	Effect of Marcela Extract (<i>Achyroclines satureiodes</i>) on the Shelf Life of Minced Tilapia (<i>Oreochromis niloticus</i>) Sausages. Journal of Aquatic Food Product Technology, 2017, 26, 140-147.	0.6	9

#	Article	IF	CITATIONS
55	A combined approach to decrease the technological and sensory defects caused by fat and sodium reduction in Bologna-type sausages. Food Science and Technology International, 2017, 23, 471-479.	1.1	10
56	Is it possible to produce a low-fat burger with a healthy n â^' 6/n â^' 3 PUFA ratio without affecting the technological and sensory properties?. Meat Science, 2017, 130, 16-25.	2.7	139
57	Single step non-thermal cleaning/sanitation of knives used in meat industry with ultrasound. Food Research International, 2017, 91, 133-139.	2.9	22
58	Technological aspects of horse meat products – A review. Food Research International, 2017, 102, 176-183.	2.9	34
59	Effect of natural antioxidants on physicochemical properties and lipid stability of pork liver pâté manufactured with healthy oils during refrigerated storage. Journal of Food Science and Technology, 2017, 54, 4324-4334.	1.4	31
60	Application of electrolyzed water for improving pork meat quality. Food Research International, 2017, 100, 757-763.	2.9	51
61	Impact of lysine and liquid smoke as flavor enhancers on the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl. Meat Science, 2017, 123, 50-56.	2.7	67
62	Influence of partial pork backfat replacement by fish oil on nutritional and technological properties of liver pĀ¢tA©. European Journal of Lipid Science and Technology, 2017, 119, 1600178.	1.0	53
63	Pork skin and canola oil as strategy to confer technological and nutritional advantages to burgers. Czech Journal of Food Sciences, 2017, 35, 352-359.	0.6	25
64	Adding Blends of NaCl, KCl, and CaCl ₂ to Low-Sodium Dry Fermented Sausages: Effects on Lipid Oxidation on Curing Process and Shelf Life. Journal of Food Quality, 2017, 2017, 1-8.	1.4	21
65	Development of Cereal Bars Containing Pineapple Peel Flour (<i>Ananas comosus</i> L. Merril). Journal of Food Quality, 2016, 39, 417-424.	1.4	43
66	Healthy Spanish salchichón enriched with encapsulated n â~' 3 long chain fatty acids in konjac glucomannan matrix. Food Research International, 2016, 89, 289-295.	2.9	109
67	Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers. Meat Science, 2016, 121, 73-78.	2.7	128
68	Properties of bologna-type sausages with pork back-fat replaced with pork skin and amorphous cellulose. Meat Science, 2015, 104, 44-51.	2.7	61
69	Effect of jabuticaba peel extract on lipid oxidation, microbial stability and sensory properties of Bologna-type sausages during refrigerated storage. Meat Science, 2015, 110, 9-14.	2.7	57
70	Is There a Potential Consumer Market for Low odium Fermented Sausages?. Journal of Food Science, 2015, 80, S1093-9.	1.5	44
71	Generation of volatile compounds in Brazilian low-sodium dry fermented sausages containing blends of NaC1, KC1, and CaC1 2 during processing and storage. Food Research International, 2015, 74, 306-314.	2.9	34
72	Impact of sodium chloride replacement by salt substitutes on the proteolysis and rheological properties of dry fermented sausages. Journal of Food Engineering, 2015, 151, 16-24.	2.7	44

#	Article	IF	CITATIONS
73	Production of Lowâ€Fat Emulsified Cooked Sausages Using Amorphous Cellulose Gel. Journal of Food Quality, 2014, 37, 437-443.	1.4	28
74	Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl. Meat Science, 2014, 96, 509-513.	2.7	109
75	The Effect of Soy Fiber Addition on the Quality of Fermented Sausages at Lowâ€Fat Content. Journal of Food Quality, 2013, 36, 41-50.	1.4	16
76	Amorphous cellulose gel as a fat substitute in fermented sausages. Meat Science, 2012, 90, 36-42.	2.7	57
77	Lysine, disodium guanylate and disodium inosinate as flavor enhancers in low-sodium fermented sausages. Meat Science, 2012, 91, 334-338.	2.7	68
78	The effect of sodium reduction and the use of herbs and spices on the quality and safety of bologna sausage. Food Science and Technology, 2012, 32, 289-297.	0.8	28
79	Fructooligosaccharides as a fat replacer in fermented cooked sausages. International Journal of Food Science and Technology, 2012, 47, 1183-1192.	1.3	34
80	Perfil sensorial e teste de consumidor de biscoito wafer tipo tradicional, light e diet sabor chocolate / Sensorial profile and test of consumer type in traditional light, and diet flavor chocolate wafers. Ambiência, 2012, 8, 245-258.	0.1	0
81	Application of lysine, taurine, disodium inosinate and disodium guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl. Meat Science, 2011, 87, 239-243.	2.7	66
82	The effect of yeast extract addition on quality of fermented sausages at low NaCl content. Meat Science, 2011, 87, 290-298.	2.7	74
83	Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on lipolysis and lipid oxidation in dry-cured ham. Meat Science, 2011, 89, 58-64.	2.7	77
84	The influence of achyrocline satureioides ("Marcela") extract on the lipid oxidation of salami. Food Science and Technology, 2011, 31, 101-105.	0.8	12
85	Sensory Aspects of Cooked Meats. , 2008, , 549-560.		0
86	Salame elaborado com Lactobacillus plantarum fermentado em meio de cultura de plasma suÃno. Food Science and Technology, 2007, 27, 833-889.	0.8	8
87	Perfil de ácidos graxos da carne de ovelhas de descarte de dois grupos genéticos submetidas a dois sistemas de manejo. Ciencia Rural, 2007, 37, 1786-1790.	0.3	6
88	Elaboração de embutido fermentado tipo salame utilizando carne de ovelhas de descarte. Food Science and Technology, 0, 28, 150-153.	0.8	6
89	Análise fÃsico-quÃmica e sensorial de hambúrguer elaborado com carne de avestruz. Food Science and Technology, 0, 28, 95-101.	0.8	20
90	FIBRAS DIETÉTICAS PARA UMA POSSÃVEL REFORMULAÇÃO DE PRODUTOS CÃRNEOS COM REDUZIDO TE FOSFATO: UMA REVISÃO. , 0, , .	OR DE	0