List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938836/publications.pdf Version: 2024-02-01

SHU HONG

#	Article	IF	CITATIONS
1	Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments. ACS Applied Materials & Interfaces, 2017, 9, 2846-2855.	4.0	139
2	Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose, 2013, 20, 741-749.	2.4	137
3	One-pot production of chitin with high purity from lobster shells using choline chloride–malonic acid deep eutectic solvent. Carbohydrate Polymers, 2017, 177, 217-223.	5.1	125
4	Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose, 2019, 26, 2303-2316.	2.4	114
5	Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties. Journal of Materials Chemistry A, 2020, 8, 7935-7946.	5.2	110
6	A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. Journal of Materials Chemistry C, 2020, 8, 550-560.	2.7	109
7	Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Industrial Crops and Products, 2020, 143, 111913.	2.5	97
8	Recyclable deep eutectic solvent for the production of cationic nanocelluloses. Carbohydrate Polymers, 2018, 199, 219-227.	5.1	93
9	Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohydrate Polymers, 2018, 201, 211-217.	5.1	91
10	Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Carbohydrate Polymers, 2020, 246, 116548.	5.1	82
11	Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 540, 524-534.	5.0	81
12	Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation. Carbohydrate Polymers, 2014, 103, 187-192.	5.1	79
13	Bisphosphonate nanocellulose in the removal of vanadium(V) from water. Cellulose, 2016, 23, 689-697.	2.4	79
14	Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification. Journal of Materials Chemistry A, 2017, 5, 21828-21835.	5.2	75
15	Anionically Stabilized Cellulose Nanofibrils through Succinylation Pretreatment in Urea–Lithium Chloride Deep Eutectic Solvent. ChemSusChem, 2016, 9, 3074-3083.	3.6	70
16	Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose, 2017, 24, 1679-1689.	2.4	66
17	Carboxymethyl Chitosan and Its Hydrophobically Modified Derivative as pH-Switchable Emulsifiers. Langmuir, 2018, 34, 2800-2806.	1.6	65
18	Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. Journal of Materials Chemistry A, 2019, 7, 755-763.	5.2	65

#	Article	IF	CITATIONS
19	High-strength cellulose nanofibers produced <i>via</i> swelling pretreatment based on a choline chloride–imidazole deep eutectic solvent. Green Chemistry, 2020, 22, 1763-1775.	4.6	65
20	Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment. Chemical Engineering Journal, 2019, 375, 122050.	6.6	59
21	Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. Carbohydrate Polymers, 2020, 236, 116095.	5.1	59
22	Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive. RSC Advances, 2016, 6, 89599-89608.	1.7	58
23	Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. Carbohydrate Polymers, 2016, 136, 581-587.	5.1	57
24	Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water. Journal of Hazardous Materials, 2020, 383, 121174.	6.5	55
25	UV-Blocking Synthetic Biopolymer from Biomass-Based Bifuran Diester and Ethylene Glycol. Macromolecules, 2018, 51, 1822-1829.	2.2	53
26	Utilizing Furfural-Based Bifuran Diester as Monomer and Comonomer for High-Performance Bioplastics: Properties of Poly(butylene furanoate), Poly(butylene bifuranoate), and Their Copolyesters. Biomacromolecules, 2020, 21, 743-752.	2.6	52
27	Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Industrial Crops and Products, 2018, 122, 513-521.	2.5	50
28	Phosphonated nanocelluloses from sequential oxidative–reductive treatment—Physicochemical characteristics and thermal properties. Carbohydrate Polymers, 2015, 133, 524-532.	5.1	46
29	Choline chloride-zinc chloride deep eutectic solvent mediated preparation of partial O-acetylation of chitin nanocrystal in one step reaction. Carbohydrate Polymers, 2019, 220, 211-218.	5.1	46
30	Synthesis of Alkalineâ€Soluble Cellulose Methyl Carbamate Using a Reactive Deep Eutectic Solvent. ChemSusChem, 2017, 10, 455-460.	3.6	45
31	Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent. Industrial Crops and Products, 2020, 154, 112677.	2.5	45
32	Preparation and characterization of microencapsulated LDHs with melamineâ€formaldehyde resin and its flame retardant application in epoxy resin. Polymers for Advanced Technologies, 2018, 29, 2147-2160.	1.6	42
33	A fast method to prepare mechanically strong and water resistant lignocellulosic nanopapers. Carbohydrate Polymers, 2019, 203, 148-156.	5.1	40
34	Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making. Carbohydrate Polymers, 2018, 197, 92-99.	5.1	38
35	Cationization of lignocellulosic fibers with betaine in deep eutectic solvent: Facile route to charge stabilized cellulose and wood nanofibers. Carbohydrate Polymers, 2018, 198, 34-40.	5.1	38
36	Highly Transparent Nanocomposites Based on Poly(vinyl alcohol) and Sulfated UV-Absorbing Wood Nanofibers. Biomacromolecules, 2019, 20, 2413-2420.	2.6	34

#	Article	IF	CITATIONS
37	Room-temperature dissolution and chemical modification of cellulose in aqueous tetraethylammonium hydroxide–carbamide solutions. Cellulose, 2020, 27, 1933-1950.	2.4	34
38	Sustainable co-solvent induced one step extraction of low molecular weight chitin with high purity from raw lobster shell. Carbohydrate Polymers, 2019, 205, 236-243.	5.1	33
39	Cationic wood cellulose films with high strength and bacterial anti-adhesive properties. Cellulose, 2014, 21, 3573-3583.	2.4	31
40	Fast microwave self-activation from chitosan hydrogel bead to hierarchical and O, N co-doped porous carbon at an air-free atmosphere for high-rate electrodes material. Carbohydrate Polymers, 2019, 219, 229-239.	5.1	31
41	Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibrils for membrane structures. Carbohydrate Polymers, 2014, 102, 584-589.	5.1	30
42	Surface Modification of Cured Inorganic Foams with Cationic Cellulose Nanocrystals and Their Use as Reactive Filter Media for Anionic Dye Removal. ACS Applied Materials & Interfaces, 2020, 12, 27745-27757.	4.0	30
43	Interactions between aminated cellulose nanocrystals and quartz: Adsorption and wettability studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 207-215.	2.3	28
44	Emulsion Stabilization with Functionalized Cellulose Nanoparticles Fabricated Using Deep Eutectic Solvents. Molecules, 2018, 23, 2765.	1.7	28
45	Key role of mild sulfonation of pine sawdust in the production of lignin containing microfibrillated cellulose by ultrafine wet grinding. Industrial Crops and Products, 2019, 140, 111664.	2.5	28
46	Fast Microwave Synthesis of Hierarchical Porous Carbons from Waste Palm Boosted by Activated Carbons for Supercapacitors. Nanomaterials, 2019, 9, 405.	1.9	28
47	Hybrid films of cellulose nanofibrils, chitosan and nanosilica—Structural, thermal, optical, and mechanical properties. Carbohydrate Polymers, 2019, 218, 87-94.	5.1	26
48	Optimization of dicarboxylic acid cellulose synthesis: Reaction stoichiometry and role of hypochlorite scavengers. Carbohydrate Polymers, 2014, 114, 73-77.	5.1	24
49	One-step method for the preparation of cationic nanocellulose in reactive eutectic media. Green Chemistry, 2021, 23, 2317-2323.	4.6	24
50	Aqueous Modification of Chitosan with Itaconic Acid to Produce Strong Oxygen Barrier Film. Biomacromolecules, 2021, 22, 2119-2128.	2.6	24
51	Application of Furan-Based Dicarboxylic Acids in Bio-Derived Dimethacrylate Resins. ACS Applied Polymer Materials, 2020, 2, 3215-3225.	2.0	23
52	UZnCl2-DES assisted synthesis of phenolic resin-based carbon aerogels for capacitors. Journal of Porous Materials, 2020, 27, 789-800.	1.3	23
53	Photocatalytic degradation of surface-coated tourmaline-titanium dioxide for self-cleaning of formaldehyde emitted from furniture. Journal of Hazardous Materials, 2021, 420, 126565.	6.5	21
54	Rapid microwave activation of waste palm into hierarchical porous carbons for supercapacitors using biochars from different carbonization temperatures as catalysts. RSC Advances, 2019, 9, 19441-19449.	1.7	20

#	Article	IF	CITATIONS
55	Zinc chloride/acetamide deep eutectic solventâ€mediated fractionation of lignin produces high―and lowâ€molecularâ€weight fillers for phenolâ€formaldehyde resins. Journal of Applied Polymer Science, 2020, 137, 48385.	1.3	20
56	Novel Low-Temperature Chemical Vapor Deposition of Hydrothermal Delignified Wood for Hydrophobic Property. Polymers, 2020, 12, 1757.	2.0	20
57	Self-assembly of graphene oxide and cellulose nanocrystals into continuous filament via interfacial nanoparticle complexation. Materials and Design, 2020, 193, 108791.	3.3	20
58	Efficient Hydrolysis of Chitin in a Deep Eutectic Solvent Synergism for Production of Chitin Nanocrystals. Nanomaterials, 2020, 10, 869.	1.9	20
59	Mechanochemical and thermal succinylation of softwood sawdust in presence of deep eutectic solvent to produce lignin-containing wood nanofibers. Cellulose, 2021, 28, 6881-6898.	2.4	18
60	Deep eutectic solvent promoted tunable synthesis of nitrogen-doped nanoporous carbons from enzymatic hydrolysis lignin for supercapacitors. Materials Research Bulletin, 2020, 123, 110708.	2.7	17
61	Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation. Materials and Design, 2020, 191, 108594.	3.3	17
62	High-consistency milling of oxidized cellulose for preparing microfibrillated cellulose films. Cellulose, 2015, 22, 3151-3160.	2.4	16
63	Lignin-containing cellulose nanofibers made with microwave-aid green solvent treatment for magnetic fluid stabilization. Carbohydrate Polymers, 2022, 291, 119573.	5.1	15
64	Synthesis of phenol formaldehyde (PF) resin for fast manufacturing laminated veneer lumber (LVL). Holzforschung, 2018, 72, 745-752.	0.9	13
65	Rapid, tunable synthesis of porous carbon xerogels with expanded graphite and their application as anodes for Li-ion batteries. Journal of Colloid and Interface Science, 2020, 565, 368-377.	5.0	12
66	Stereoselectively water resistant hybrid nanopapers prepared by cellulose nanofibers and water-based polyurethane. Carbohydrate Polymers, 2018, 199, 286-293.	5.1	11
67	Highly Stable Dispersion of Carbon Nanotubes in Deep Eutectic Solvent for the Preparation of CNTâ€Embedded Carbon Xerogels for Supercapacitors. ChemElectroChem, 2019, 6, 5750-5758.	1.7	11
68	A Fast Dissolution Pretreatment to Produce Strong Regenerated Cellulose Nanofibers via Mechanical Disintegration. Biomacromolecules, 2021, 22, 3366-3376.	2.6	11
69	Renewable Furfural-Based Polyesters Bearing Sulfur-Bridged Difuran Moieties with High Oxygen Barrier Properties. Biomacromolecules, 2022, 23, 1803-1811.	2.6	10
70	Structural Changes of Lignin after Ionic Liquid Pretreatment. BioResources, 2017, 12, .	0.5	9
71	Deep eutectic solvents-assisted cost-effective synthesis of nitrogen-doped hierarchical porous carbon xerogels from phenol-formaldehyde by two-stage polymerization. Journal of Sol-Gel Science and Technology, 2018, 86, 795-806.	1.1	9
72	Carbamation of Starch with Amine Using Dimethyl Carbonate as Coupling Agent. ACS Omega, 2019, 4, 15702-15710.	1.6	7

#	Article	IF	CITATIONS
73	Energy consumption, physical properties and reinforcing ability of microfibrillated cellulose with high lignin content made from non-delignified spruce and pine sawdust. Industrial Crops and Products, 2021, 170, 113738.	2.5	5