Adam Macierzanka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938404/publications.pdf

Version: 2024-02-01

36 papers 7,659 citations

304368 22 h-index 344852 36 g-index

38 all docs 38 docs citations

38 times ranked 7021 citing authors

#	Article	IF	CITATIONS
1	Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. International Journal of Pharmaceutics, 2022, 615, 121488.	2.6	23
2	Analysis of the Factors Affecting Static In Vitro Pepsinolysis of Food Proteins. Molecules, 2022, 27, 1260.	1.7	5
3	Relative quantification of pork and beef in meat products using global and species-specific peptide markers for the authentication of meat composition. Food Chemistry, 2022, 389, 133066.	4.2	9
4	Towards Rational Biosurfactant Designâ€"Predicting Solubilization in Rhamnolipid Solutions. Molecules, 2021, 26, 534.	1.7	4
5	The bile salt content of human bile impacts on simulated intestinal proteolysis of \hat{l}^2 -lactoglobulin. Food Research International, 2021, 145, 110413.	2.9	5
6	INFOGEST inter-laboratory recommendations for assaying gastric and pancreatic lipases activities prior to in vitro digestion studies. Journal of Functional Foods, 2021, 82, 104497.	1.6	22
7	Importance of Bile Composition for Diagnosis of Biliary Obstructions. Molecules, 2021, 26, 7279.	1.7	4
8	Colloidal transport of lipid digesta in human and porcine small intestinal mucus. Food Research International, 2020, 138, 109752.	2.9	4
9	Comparing the permeability of human and porcine small intestinal mucus for particle transport studies. Scientific Reports, 2020, 10, 20290.	1.6	32
10	Bile salts in digestion and transport of lipids. Advances in Colloid and Interface Science, 2019, 274, 102045.	7.0	105
11	MRM–MS of marker peptides and their abundance as a tool for authentication of meat species and meat cuts in single-cut meat products. Food Chemistry, 2019, 283, 367-374.	4.2	26
12	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
13	Permeability of the small intestinal mucus for physiologically relevant studies: Impact of mucus location and ex vivo treatment. Scientific Reports, 2019, 9, 17516.	1.6	43
14	Which casein in sodium caseinate is most resistant to in vitro digestion? Effect of emulsification and enzymatic structuring. Food Hydrocolloids, 2019, 88, 114-118.	5.6	22
15	Rhamnolipid CMC prediction. Journal of Colloid and Interface Science, 2017, 488, 10-19.	5.0	53
16	Sodium alginate decreases the permeability of intestinal mucus. Food Hydrocolloids, 2016, 52, 749-755.	5.6	58
17	Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals. British Journal of Nutrition, 2015, 114, 418-429.	1.2	8
18	The influence of small intestinal mucus structure on particle transport ex vivo. Colloids and Surfaces B: Biointerfaces, 2015, 135, 73-80.	2.5	94

#	Article	IF	CITATIONS
19	Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA. PLoS ONE, 2014, 9, e95274.	1.1	70
20	A standardised static <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2014, 5, 1113-1124.	2.1	3,730
21	Specificity of Infant Digestive Conditions: Some Clues for Developing Relevant In Vitro Models. Critical Reviews in Food Science and Nutrition, 2014, 54, 1427-1457.	5.4	213
22	Enzymatically Structured Emulsions in Simulated Gastrointestinal Environment: Impact on Interfacial Proteolysis and Diffusion in Intestinal Mucus. Langmuir, 2012, 28, 17349-17362.	1.6	40
23	Lamellar Structures of MUC2-Rich Mucin: A Potential Role in Governing the Barrier and Lubricating Functions of Intestinal Mucus. Biomacromolecules, 2012, 13, 3253-3261.	2.6	91
24	The Role of the Mucus Barrier in Digestion. Food Digestion, 2012, 3, 8-15.	0.9	17
25	The effect of gel structure on the kinetics of simulated gastrointestinal digestion of bovine \hat{l}^2 -lactoglobulin. Food Chemistry, 2012, 134, 2156-2163.	4.2	72
26	Enzymatic cross-linking of β-lactoglobulin in solution and at air–water interface: Structural constraints. Food Hydrocolloids, 2012, 28, 1-9.	5.6	37
27	Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter, 2011, 7, 8077.	1.2	77
28	Transglutaminase cross-linking kinetics of sodium caseinate is changed after emulsification. Food Hydrocolloids, 2011, 25, 843-850.	5.6	40
29	The role of bile salts in digestion. Advances in Colloid and Interface Science, 2011, 165, 36-46.	7.0	422
30	Colloidal aspects of protein digestion. Current Opinion in Colloid and Interface Science, 2010, 15, 102-108.	3.4	137
31	Effect of crystalline emulsifier composition on structural transformations of water-in-oil emulsions: Emulsification and quiescent conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334, 40-52.	2.3	41
32	Emulsification alters simulated gastrointestinal proteolysis of \hat{l}^2 -casein and \hat{l}^2 -lactoglobulin. Soft Matter, 2009, 5, 538-550.	1.2	193
33	Phase Transitions and Microstructure of Emulsion Systems Prepared with Acylglycerols/Zinc Stearate Emulsifier. Langmuir, 2006, 22, 2487-2497.	1.6	14
34	Microstructural behavior of water-in-oil emulsions stabilized by fatty acid esters of propylene glycol and zinc fatty acid salts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 125-137.	2.3	14
35	Esterification Kinetics of Glycerol with Fatty Acids in the Presence of Zinc Carboxylates:  Preparation of Modified Acylglycerol Emulsifiers. Industrial & Engineering Chemistry Research, 2004, 43, 7744-7753.	1.8	57
36	Properties of W/O Emulsions Stabilized with Acylglycerol Emulsifiers Modified with Zinc Carboxylates. Journal of Dispersion Science and Technology, 2004, 25, 173-182.	1.3	4

3