
Muazzam Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-1 Receptor-Mediated Signal Is an Essential Component of MyD88-Dependent Innate Response to <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2007, 179, 1178-1189.	0.8	301
2	Prominent role for T cell-derived Tumour Necrosis Factor for sustained control of Mycobacterium tuberculosis infection. Scientific Reports, 2013, 3, 1809.	3.3	108
3	A Virus-Like Particle-Based Vaccine Selectively Targeting Soluble TNF-α Protects from Arthritis without Inducing Reactivation of Latent Tuberculosis. Journal of Immunology, 2007, 178, 7450-7457.	0.8	104
4	The C-Type Lectin Receptor CLECSF8/CLEC4D Is a Key Component of Anti-Mycobacterial Immunity. Cell Host and Microbe, 2015, 17, 252-259.	11.0	100
5	Relative contribution of ILâ€1α, ILâ€1β and TNF to the host response to <i>Mycobacterium tuberculosis</i> and attenuated <i>M. bovis BCG</i> . Immunity, Inflammation and Disease, 2013, 1, 47-62.	2.7	87
6	Tumor necrosis factor is critical to control tuberculosis infection. Microbes and Infection, 2007, 9, 623-628.	1.9	83
7	Lethal Mycobacterium Bovis Bacillus Calmette Guérin Infection in Nitric Oxide Synthase 2-Deficient Mice: Cell-Mediated Immunity Requires Nitric Oxide Synthase 2. Laboratory Investigation, 2000, 80, 1385-1397.	3.7	76
8	Non-Opsonic Recognition of <i>Mycobacterium tuberculosis</i> by Phagocytes. Journal of Innate Immunity, 2009, 1, 231-243.	3.8	61
9	Membrane TNF confers protection to acute mycobacterial infection. Respiratory Research, 2005, 6, 136.	3.6	58
10	TNF in Host Resistance to Tuberculosis Infection. Current Directions in Autoimmunity, 2010, 11, 157-179.	8.0	53
11	Correction of Defective Host Response to Mycobacterium Bovis BCG Infection in TNF-Deficient Mice by Bone Marrow Transplantation. Laboratory Investigation, 2000, 80, 901-914.	3.7	45
12	GM-CSF targeted immunomodulation affects host response to M. tuberculosis infection. Scientific Reports, 2018, 8, 8652.	3.3	42
13	Innate myeloid cell TNFR1 mediates first line defence against primary Mycobacterium tuberculosis infection Scientific Reports, 2016, 6, 22454.	3.3	40
14	Tumor Necrosis Factor Receptor 2 Plays a Minor Role for Mycobacterial Immunity. Pathobiology, 2000, 68, 68-75.	3.8	39
15	Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis. Journal of Clinical Investigation, 2014, 124, 1537-1551.	8.2	39
16	TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. Journal of Neuroinflammation, 2015, 12, 125.	7.2	37
17	<i>Mycobacterium tuberculosis</i> infection of the †nonâ€classical immune cell'. Immunology and Cell Biology, 2015, 93, 789-795.	2.3	36
18	Immunity Against Bacterial Infection of the Central Nervous System: An Astrocyte Perspective. Frontiers in Molecular Neuroscience, 2019, 12, 57.	2.9	35

Muazzam Jacobs

#	Article	IF	CITATIONS
19	Controlled Mycobacterium tuberculosis infection in mice under treatment with anti-IL-17A or IL-17F antibodies, in contrast to TNFα neutralization. Scientific Reports, 2016, 6, 36923.	3.3	34
20	Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Frontiers in Cellular Neuroscience, 2015, 9, 182.	3.7	33
21	Protective role of membrane tumour necrosis factor in the host's resistance to mycobacterial infection. Immunology, 2008, 125, 522-534.	4.4	29
22	The Contraceptive Depot Medroxyprogesterone Acetate Impairs Mycobacterial Control and Inhibits Cytokine Secretion in Mice Infected with Mycobacterium tuberculosis. Infection and Immunity, 2013, 81, 1234-1244.	2.2	28
23	Diagnostic accuracy of a selected signature gene set that discriminates active pulmonary tuberculosis and other pulmonary diseases. Journal of Infection, 2017, 75, 499-510.	3.3	28
24	Reactivation of tuberculosis by tumor necrosis factor neutralization. European Cytokine Network, 2007, 18, 5-13.	2.0	28
25	Enhanced Immune Response in Mycobacterium bovis Bacille Calmette Guerin (BCG)-Infected IL-10-Deficient Mice. Clinical Chemistry and Laboratory Medicine, 2002, 40, 893-902.	2.3	25
26	Immunity to the Dual Threat of Silica Exposure and Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 3069.	4.8	25
27	Mycobacterium Tuberculosis and Interactions with the Host Immune System: Opportunities for Nanoparticle Based Immunotherapeutics and Vaccines. Pharmaceutical Research, 2019, 36, 8.	3.5	20
28	Neurons Are Host Cells for Mycobacterium tuberculosis. Infection and Immunity, 2014, 82, 1880-1890.	2.2	19
29	Activation and Regulation of Blood VÎ 2 T Cells Are Amplified by TREM-1+ during Active Pulmonary Tuberculosis. Journal of Immunology, 2018, 200, 1627-1638.	0.8	18
30	Novel non-neuroleptic phenothiazines inhibit Mycobacterium tuberculosis replication. Journal of Antimicrobial Chemotherapy, 2014, 69, 1551-1558.	3.0	14
31	Reactivation of M. tuberculosis Infection in Trans-Membrane Tumour Necrosis Factor Mice. PLoS ONE, 2011, 6, e25121.	2.5	9
32	Myeloid and T Cell-Derived TNF Protects against Central Nervous System Tuberculosis. Frontiers in Immunology, 2017, 8, 180.	4.8	8
33	Toll-Like Receptors and Control of Mycobacterial Infection in Mice. Novartis Foundation Symposium, 0, , 127-141.	1.1	8
34	In vitro and in vivo toxicity evaluation of non-neuroleptic phenothiazines, antitubercular drug candidates. Regulatory Toxicology and Pharmacology, 2019, 109, 104508.	2.7	6
35	Persistent p55TNFR expression impairs T cell responses during chronic tuberculosis and promotes reactivation. Scientific Reports, 2016, 6, 39499.	3.3	5
36	Innate type 1 immune response, but not IL-17Âcells control tuberculosis infection. Biomedical Journal, 2021, 44, 165-171.	3.1	5

Muazzam Jacobs

#	Article	IF	CITATIONS
37	Silicaâ€related diseases in the modern world: A role for selfâ€DNA sensing in lung inflammatory diseases. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3009-3010.	5.7	4
38	TNFRp75â€dependent immune regulation of alveolar macrophages and neutrophils during early <i>Mycobacterium tuberculosis</i> and <i>Mycobacterium bovis</i> BCG infection. Immunology, 2021, 162, 220-234.	4.4	3
39	BCG mediated protection against M. tuberculosis is sustained post malaria infection independent of parasite virulence. Immunology, 2021, , .	4.4	3
40	Immune control of Mycobacterium tuberculosis is dependent on both soluble TNFRp55 and soluble TNFRp75. Immunology, 2021, 164, 524-540.	4.4	2
41	Complete ablation of tumor necrosis factor decreases the production of IgA, IgG, and IgM in experimental central nervous system tuberculosis. Iranian Journal of Basic Medical Sciences, 2020, 23, 680-690.	1.0	2
42	The Use of Murine Infection Models to Investigate the Protective Role of TNF in Central Nervous System Tuberculosis. Methods in Molecular Biology, 2021, 2248, 211-220.	0.9	0