Katarina Cufar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938369/publications.pdf Version: 2024-02-01

KATADINA CLIEAD

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.	10.3	403
3	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
4	Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 2015, 1, 15160.	9.3	294
5	Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 2020, 11, 545.	12.8	228
6	Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archaeological Science, 2009, 36, 1-11.	2.4	207
7	Bioclimatology of beech (<i>Fagus sylvatica</i> L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a treeâ€ring network. Journal of Biogeography, 2007, 34, 1873-1892.	3.0	175
8	Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 2016, 22, 3804-3813.	9.5	174
9	Effect of Local Heating and Cooling on Cambial Activity and Cell Differentiation in the Stem of Norway Spruce (Picea abies). Annals of Botany, 2006, 97, 943-951.	2.9	169
10	Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees - Structure and Function, 2008, 22, 749-758.	1.9	151
11	Quantitative Wood Anatomy—Practical Guidelines. Frontiers in Plant Science, 2016, 7, 781.	3.6	149
12	Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology, 2013, 180, 142-151.	4.8	136
13	Seasonal Dynamics of Wood Formation in Pinus Halepensis from Dry and Semi-Arid Ecosystems in Spain. IAWA Journal, 2007, 28, 389-404.	2.7	135
14	Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology, 2013, 33, 48-56.	3.1	122
15	Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Science and Technology, 2007, 41, 463-475.	3.2	120
16	A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere. Annals of Botany, 2013, 112, 1911-1920.	2.9	119
17	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	3.6	117
18	Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20645-20652.	7.1	113

#	Article	IF	CITATIONS
19	Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 2017, 62, 804-812.	9.0	110
20	Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia, 2011, 29, 163-169.	2.2	103
21	Plasticity in Dendroclimatic Response across the Distribution Range of Aleppo Pine (Pinus halepensis). PLoS ONE, 2013, 8, e83550.	2.5	100
22	Differentiation of Terminal Latewood Tracheids in Silver Fir Trees During Autumn. Annals of Botany, 2005, 95, 959-965.	2.9	98
23	Growth patterns as indicators of impending tree death in silver fir. Forest Ecology and Management, 2004, 199, 183-190.	3.2	95
24	ls precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau?. Annals of Botany, 2015, 115, 629-639.	2.9	94
25	Size mediated climate–growth relationships in Pinus halepensis and Pinus pinea. Trees - Structure and Function, 2009, 23, 1065-1073.	1.9	90
26	Cambial activity, wood formation and sapling survival of Pinus halepensis exposed to different irrigation regimes. Forest Ecology and Management, 2011, 262, 1630-1638.	3.2	89
27	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	4.4	89
28	Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees - Structure and Function, 2012, 26, 1091-1100.	1.9	84
29	Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russian Journal of Plant Physiology, 2008, 55, 538-543.	1.1	83
30	Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiology, 2014, 34, 869-881.	3.1	79
31	Highâ€Throughput <scp>DNA</scp> sequencing of ancient wood. Molecular Ecology, 2018, 27, 1138-1154.	3.9	73
32	Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps. Frontiers in Plant Science, 2016, 7, 595.	3.6	72
33	Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Global Change Biology, 2019, 25, 1089-1105.	9.5	72
34	Climatic signals in tree-ring widths and wood structure of Pinus halepensis in contrasted environmental conditions. Trees - Structure and Function, 2013, 27, 927-936.	1.9	65
35	Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – An integrated approach using remote sensing and tree-ring data. Agricultural and Forest Meteorology, 2020, 287, 107925.	4.8	61
36	Number of Cells in Xylem, Phloem and Dormant Cambium in Silver Fir (Abies Alba), in Trees of Different Vitality. IAWA Journal, 2009, 30, 121-133.	2.7	58

#	Article	IF	CITATIONS
37	Age, climate and intra-annual density fluctuations in Pinus halepensis in Spain. IAWA Journal, 2013, 34, 459-474.	2.7	54
38	Growing season and radial growth predicted for Fagus sylvatica under climate change. Climatic Change, 2019, 153, 181-197.	3.6	54
39	Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Frontiers in Plant Science, 2015, 6, 730.	3.6	53
40	Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Regional Environmental Change, 2014, 14, 1801-1810.	2.9	51
41	Dendrochronology and Past Human Activity—A Review of Advances Since 2000. Tree-Ring Research, 2007, 63, 47-60.	0.6	48
42	Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. International Journal of Biometeorology, 2008, 52, 607-615.	3.0	48
43	Living on the Edge: Contrasted Wood-Formation Dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean Conditions. Frontiers in Plant Science, 2016, 7, 370.	3.6	47
44	Annual Cambial Rhythm in Pinus halepensis and Pinus sylvestris as Indicator for Climate Adaptation. Frontiers in Plant Science, 2016, 07, 1923.	3.6	46
45	A 548-Year Tree-Ring Chronology of Oak (Quercus spp.) for Southeast Slovenia and its Significance as a Dating Tool and Climate Archive. Tree-Ring Research, 2008, 64, 3-15.	0.6	43
46	Xylem and phloem formation in chestnut (Castanea sativa Mill.) during the 2008 growing season. Dendrochronologia, 2011, 29, 127-134.	2.2	41
47	Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees - Structure and Function, 2014, 28, 1267-1277.	1.9	41
48	Seasonal ultrastructural changes in the cambial zone of beech (Fagus sylvatica) grown at two different altitudes. IAWA Journal, 2011, 32, 443-459.	2.7	39
49	Xylogenesis reveals the genesis and ecological signal of IADFs in Pinus pinea L. and Arbutus unedo L Annals of Botany, 2018, 121, 1231-1242.	2.9	39
50	Dating of 4th millennium BC pile-dwellings on Ljubljansko barje, Slovenia. Journal of Archaeological Science, 2010, 37, 2031-2039.	2.4	37
51	Frequency and variability of missing tree rings along the stems of Pinus halepensis and Pinus pinea from a semiarid site in SE Spain. Journal of Arid Environments, 2011, 75, 494-498.	2.4	37
52	Plant economy at a late Neolithic lake dwelling site in Slovenia at the time of the Alpine Iceman. Vegetation History and Archaeobotany, 2011, 20, 207-222.	2.1	36
53	Towards a common methodology for developing logistic tree mortality models based on ringâ€width data. Ecological Applications, 2016, 26, 1827-1841.	3.8	36
54	Topochemical investigations of cell walls in developing xylem of beech (<i>Fagus sylvatica</i> L.). Holzforschung, 2009, 63, 482-490.	1.9	35

#	Article	IF	CITATIONS
55	Review of cellular and subcellular changes in the cambium. IAWA Journal, 2013, 34, 391-407.	2.7	35
56	Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?. International Journal of Biometeorology, 2015, 59, 1127-1132.	3.0	33
57	Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. Tree Physiology, 2018, 38, 186-197.	3.1	33
58	Timing of False Ring Formation in Pinus halepensis and Arbutus unedo in Southern Italy: Outlook from an Analysis of Xylogenesis and Tree-Ring Chronologies. Frontiers in Plant Science, 2016, 7, 705.	3.6	32
59	A Roman barge in the Ljubljanica river (Slovenia): wood identification, dendrochronological dating and wood preservation research. Journal of Archaeological Science, 2014, 44, 128-135.	2.4	29
60	Eneolithic pile dwellings south of the Alps precisely dated with tree-ring chronologies from the north. Dendrochronologia, 2015, 35, 91-98.	2.2	29
61	Challenges for growth of beech and co-occurring conifers in a changing climate context. Dendrochronologia, 2018, 52, 1-10.	2.2	29
62	Recovery techniques for waterlogged archaeological sediments: a comparison of different treatment methods for samples from Neolithic lake shore settlements. Vegetation History and Archaeobotany, 2010, 19, 53-67.	2.1	28
63	Missing Rings in Pinus halepensis – The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events. Frontiers in Plant Science, 2016, 7, 727.	3.6	27
64	MISSING AND DARK RINGS ASSOCIATED WITH DROUGHT IN PINUS HALEPENSIS. IAWA Journal, 2016, 37, 260-274.	2.7	27
65	Micro-morphological, physical and thermogravimetric analyses of waterlogged archaeological wood from the prehistoric village of Gran Carro (Lake Bolsena-Italy). Journal of Cultural Heritage, 2018, 33, 30-38.	3.3	26
66	Anatomy, Cell Wall Structure and Topochemistry of Water-Logged Archaeological wood aged 5,200 and 4,500 years. IAWA Journal, 2008, 29, 55-68.	2.7	25
67	Mexican tropical hardwoods. Comparative study of ash and silica content. European Journal of Wood and Wood Products, 1995, 53, 61-62.	2.9	23
68	Variation of Maximum Tree Height and Annual Shoot Growth of Smith Fir at Various Elevations in the Sygera Mountains, Southeastern Tibetan Plateau. PLoS ONE, 2012, 7, e31725.	2.5	23
69	LACK OF ANNUAL PERIODICITY IN CAMBIAL PRODUCTION OF PHLOEM IN TREES FROM MEDITERRANEAN AREAS. IAWA Journal, 2016, 37, 349-364.	2.7	21
70	Detecting changes in tree health and productivity of silver fir in Slovenia. Forest Pathology, 1999, 29, 189-197.	0.8	20
71	Cellular and topochemical characteristics of secondary changes in bark tissues of beech (Fagus) Tj ETQq1 1 0.78	84314 rgBT 1.9	- /Qyerlock 1
72	WALL STRUCTURE OF TERMINAL LATEWOOD TRACHEIDS OF HEALTHY AND DECLINING SILVER FIR TREES IN THE DINARIC REGION, SLOVENIA. IAWA Journal, 2003, 24, 41-51.	2.7	17

#	Article	IF	CITATIONS
73	Combining Dendrometer Series and Xylogenesis Imagery—DevX, a Simple Visualization Tool to Explore Plant Secondary Growth Phenology. Frontiers in Forests and Global Change, 2019, 2, .	2.3	17
74	Density and Mechanical Properties of Oak Sapwood Versus Heartwood. Drvna Industrija, 2013, 64, 323-334.	0.6	17
75	Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. Forests, 2021, 12, 331.	2.1	15
76	Castle Pišece, Slovenia – Building history and wood economy revealed by dendrochronology, dendroprovenancing and historical sources. Dendrochronologia, 2014, 32, 357-363.	2.2	14
77	Some Wood Anatomical, Physiological, and Silvicultural Aspects of Silver Fir Dieback in Slovenia (NW) Tj ETQq1	0,784314 2.7	l rgBT /Over
78	Dendrochronological investigation of the bowed string instruments at the Theatre Museum Carlo Schmidl in Trieste, Italy. Journal of Cultural Heritage, 2017, 27, S55-S62.	3.3	13
79	Lipophilic Extractives in Heartwood of European Larch (Larix decidua Mill.). Drvna Industrija, 2015, 66, 305-313.	0.6	12
80	Hydrophilic Extractives in Heartwood of European Larch (Larix decidua Mill.). Drvna Industrija, 2017, 67, 363-370.	0.6	12
81	SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia. Earth System Science Data, 2021, 13, 3577-3592.	9.9	12
82	Dating of violins – The interpretation of dendrochronological reports. Journal of Cultural Heritage, 2017, 27, S44-S54.	3.3	11
83	FUNCTIONAL TRAITS IN WOOD ANAT OMY. IAWA Journal, 2016, 37, 124-126.	2.7	10
84	Testing three climate datasets for dendroclimatological studies of oaks in the South Carpathians. Science of the Total Environment, 2019, 694, 133730.	8.0	10
85	Main Phases of Wood Formation in Chestnut (Castanea sativa) in Central Italy - Comparison of Seasons 2008 and 2009. Drvna Industrija, 2011, , 269-275.	0.6	8
86	Identification of woodland management by analysis of roundwood age and diameter: Neolithic case studies. Forest Ecology and Management, 2020, 467, 118136.	3.2	8
87	Tree-Ring Chronology of Pedunculate Oak (Quercus robur) and its Potential for Development of Dendrochronological Research in Croatia. Drvna Industrija, 2014, 65, 129-137.	0.6	7
88	Structural and acoustic properties of African padouk (Pterocarpus soyauxii) wood for xylophones. European Journal of Wood and Wood Products, 2015, 73, 235-243.	2.9	7
89	Intra-seasonal trends in phloem traits in Pinus spp. from drought-prone environments. IAWA Journal, 2020, 41, 219-235.	2.7	7
90	Xylem and Phloem Formation Dynamics in Quercus ilex L. at a Dry Site in Southern Italy. Forests, 2021, 12, 188.	2.1	7

#	Article	IF	CITATIONS
91	Scanning Electron Microscopy Protocol for Studying Anatomy of Highly Degraded Waterlogged Archaeological Wood. Forests, 2022, 13, 161.	2.1	7
92	Trampling as a major ecological factor affecting the radial growth and wood anatomy of Scots pine (Pinus sylvestris L.) roots on a hiking trail. Ecological Indicators, 2021, 121, 107095.	6.3	6
93	The Vascular Cambium of Trees and its Involvement in Defining Xylem Anatomy. , 2016, , 3-24.		6
94	Application of confocal laser scanning microscopy in dendrochronology. Les/Wood, 2019, 68, 5-17.	0.3	6
95	Comparative decay resistance of 43 mexican tropical hardwoods. European Journal of Wood and Wood Products, 1994, 52, 394-396.	2.9	5
96	Mexican tropical hardwoods. pH-value. European Journal of Wood and Wood Products, 1995, 53, 133-134.	2.9	5
97	Characteristics and Geographical Distribution of Fiddleback Figure in Wood of Acer pseudoplatanus L. in Slovenia. Drvna Industrija, 2015, 66, 213-220.	0.6	5
98	Lastnosti bukovine in njena raba. Les/Wood, 2017, 66, 27-39.	0.3	5
99	Altered growth with blue rings: comparison of radial growth and wood anatomy between trampled and non-trampled Scots pine roots. Dendrochronologia, 2022, 72, 125922.	2.2	5
100	Cell-wall fluorescence highlights the phases of xylogenesis. IAWA Journal, 2021, 43, 80-91.	1.0	5
101	Les Banove hiÅje v ArtiÄeh kot zgodovinski arhiv. Acta Silvae Et Ligni, 2013, 101, 33-44.	0.2	3
102	Research potential of wood of barrels from Roman water wells. Les/Wood, 2019, 68, 47-60.	0.3	3
103	Wood identification using non-destructive confocal laser scanning microscopy. Les/Wood, 2019, 68, 19-29.	0.3	3
104	Reply to Elmendorf and Ettinger: Photoperiod plays a dominant and irreplaceable role in triggering secondary growth resumption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32865-32867.	7.1	2
105	Wood formation in Norway spruce on a lowland site in Slovenia in 2015 and comparison with other conifers all over Europe. Les/Wood, 2017, 66, 15-27.	0.3	2
106	Tree-rings in Mediterranean pines – can we ascribe them to calendar years?. Les/Wood, 2019, 68, 5-14.	0.3	2
107	Dendrochronological study of painted chests from the collection of the Gorenjska Museum in Kranj. Les/Wood, 2020, 69, 33-45.	0.3	2
108	Wood identification of charcoal with Confocal Laser Scanning Microscopy. Les/Wood, 2020, 69, 21-35.	0.3	2

#	Article	IF	CITATIONS
109	Inter-tree variability of autumn leaf phenology of European beech (Fagus sylvatica) on a site in Ljubljana, Slovenia. Les/Wood, 2020, 69, 5-20.	0.3	2
110	Dieter Eckstein, 1939-2021 and his rich legacy of dendrochronology in Slovenia and the world. Les/Wood, 2021, 70, 99-109.	0.3	2
111	Bioelectrical resistance and its seasonal variation as the indicator of tree condition as illustrated by silver fir (Abies alba Mill.). European Journal of Wood and Wood Products, 1992, 50, 180-180.	2.9	1
112	Nastajanje ksilemske in floemske branike pri bukvah, poÅįkodovanih v žledolomu. Acta Silvae Et Ligni, 2016, , 3-13.	0.2	1
113	Fizikalne in mehanske lastnosti svežega in osušenega lesa v bukovih deblih, izruvanih med žledolomom. Acta Silvae Et Ligni, 2017, 112, 7-20.	0.2	1
114	Dendrochronology of sessile oak (Quercus petraea) on the transition between the sub-Mediterranean and temperate Continental climatic zones in Slovenia. Les/Wood, 2018, 67, 5-20.	0.3	1
115	Phenology of leaf development in European beech (Fagus sylvatica) on a site in Ljubljana, Slovenia in 2020. Les/Wood, 2020, 69, 5-19.	0.3	1
116	Quality and Price of Spruce Logs, Determined Conventionally and by Dendrochronological and NDE Techniques. Forests, 2022, 13, 729.	2.1	1
117	Title is missing!. Dendrochronologia, 2007, 24, 51.	2.2	0
118	Nastajanje in struktura lesa in floema pri navadni smreki. Les/Wood, 2021, 70, 5-18.	0.3	0
119	Nastajanje ksilemske in floemske branike pri bukvah, poÅįkodovanih v žledolomu. Acta Silvae Et Ligni, 2016, 110, 3-13.	0.2	0
120	Vpliv suÅjilnega postopka na kakovost in izkoristek bukovega žaganega lesa. Les/Wood, 2017, 66, 17-26.	0.3	0
121	Palisandri in sorodniki iz rodu Dalbergia na seznamu CITES. Les/Wood, 2018, 67, 27-41.	0.3	0
122	Fritz Hans Schweingruber, 1936-2020, je premikal meje anatomije lesa in dendrokronologije. Les/Wood, 2020, 69, 101-107.	0.3	0
123	Tree Story: The History of the World Written in Rings. Tree-Ring Research, 2020, 76, 104.	0.6	0
124	Wood analyses helped to determine the location and approximate construction period of the Roman bridge over the Drava River in ancient Poetovio (Ptuj, Slovenia). Les/Wood, 2021, 70, 71-85.	0.3	0
125	Motivacija za izobraževanje in usposabljanje generacij Y in Z v lesarstvu. Les/Wood, 2021, 70, 87-98. 	0.3	0