
Chengshan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938205/publications.pdf Version: 2024-02-01

CHENCSHAN WANC

#	Article	IF	CITATIONS
1	Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4987-4992.	7.1	672
2	Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 2014, 621, 1-43.	2.2	444
3	Propagation of the deformation and growth of the Tibetan–Himalayan orogen: A review. Earth-Science Reviews, 2015, 143, 36-61.	9.1	209
4	Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 17-30.	2.3	206
5	Rapid forearc spreading between 130 and 120Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 2013, 172-173, 1-16.	1.4	176
6	Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos, 2009, 112, 149-162.	1.4	142
7	Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research, 2005, 26, 3-20.	1.4	133
8	Astrochronology of the Early Turonian–Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 55-70.	2.3	126
9	India-Asia collision was at 24°N and 50â€Ma: palaeomagnetic proof from southernmost Asia. Scientific Reports, 2012, 2, 925.	3.3	123
10	Revision of the Cretaceous–Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research, 2012, 22, 415-433.	6.0	121
11	Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian–Lower Danian in Songliao Basin, northeastern China. Earth and Planetary Science Letters, 2014, 407, 82-95.	4.4	119
12	Multi-stage tectono-magmatic events of the Eastern Kunlun Range, northern Tibet: Insights from U–Pb geochronology and (U–Th)/He thermochronology. Tectonophysics, 2013, 599, 97-106.	2.2	112
13	Revised chronology of central Tibet uplift (Lunpola Basin). Science Advances, 2020, 6, .	10.3	109
14	A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet. Earth and Planetary Science Letters, 2011, 306, 279-288.	4.4	107
15	Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research, 2005, 26, 21-32.	1.4	106
16	Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth-Science Reviews, 2013, 126, 275-299.	9.1	106
17	Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241, 49-60.	2.3	103
18	Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau?. Lithos, 2013, 160-161, 1-13.	1.4	100

#	Article	IF	CITATIONS
19	Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet. Lithos, 2011, 125, 347-367.	1.4	97
20	Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics. Terra Nova, 2002, 14, 114-120.	2.1	96
21	Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: Assessing an Early Cretaceous disruption of the Neo-Tethyan supra-subduction zone and consequences on basin closing. Gondwana Research, 2012, 22, 398-414.	6.0	95
22	Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research, 2012, 22, 482-492.	6.0	87
23	The onset of widespread marine red beds and the evolution of ferruginous oceans. Nature Communications, 2017, 8, 399.	12.8	86
24	Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau. Geophysical Journal International, 2003, 154, 233-252.	2.4	84
25	Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sedimentary Geology, 2011, 235, 27-37.	2.1	83
26	High elevation of Jiaolai Basin during the Late Cretaceous: Implication for the coastal mountains along the East Asian margin. Earth and Planetary Science Letters, 2016, 456, 112-123.	4.4	80
27	Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society, 2006, 163, 375-382.	2.1	79
28	Organic-matter accumulation of the lacustrine Lunpola oil shale, central Tibetan Plateau: Controlled by the paleoclimate, provenance, and drainage system. International Journal of Coal Geology, 2015, 147-148, 58-70.	5.0	78
29	Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet. Sedimentary Geology, 2001, 140, 251-270.	2.1	76
30	Upper Jurassic–Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas. Cretaceous Research, 2008, 29, 301-315.	1.4	76
31	Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys?. Gondwana Research, 2011, 19, 232-243.	6.0	76
32	Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology, 2015, 43, 287-290.	4.4	76
33	Tertiary crustal shortening and peneplanation in the Hoh Xil region: implications for the tectonic history of the northern Tibetan Plateau. Journal of Asian Earth Sciences, 2002, 20, 211-223.	2.3	70
34	High-precision U–Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China. Earth and Planetary Science Letters, 2016, 446, 37-44.	4.4	67
35	The Yarlung–Zangbo paleo-ophiolite, southern Tibet: implications for the dynamic evolution of the Yarlung–Zangbo Suture Zone. Journal of Asian Earth Sciences, 2000, 18, 651-661.	2.3	66
36	Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet. Journal of Asian Earth Sciences, 2008, 32, 423-437.	2.3	66

#	Article	IF	CITATIONS
37	Cretaceous oceanic red beds (CORBs): Different time scales and models of origin. Earth-Science Reviews, 2012, 115, 217-248.	9.1	66
38	Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau: Evidence from Apatite and Zircon (U-Th)/He Thermochronology. Journal of Geology, 2013, 121, 155-172.	1.4	64
39	Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 125-136.	2.3	64
40	Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet. Journal of Asian Earth Sciences, 2012, 53, 25-37.	2.3	63
41	Cretaceous volcanic rocks in south Qiangtang Terrane: Products of northward subduction of the Bangong–Nujiang Ocean?. Journal of Asian Earth Sciences, 2015, 104, 69-83.	2.3	63
42	The Beimarang mélange (southern Tibet) brings additional constraints in assessing the origin, metamorphic evolution and obduction processes of the Yarlung Zangbo ophiolite. Journal of Asian Earth Sciences, 2002, 21, 307-322.	2.3	58
43	The vast proto-Tibetan Plateau: New constraints from Paleogene Hoh Xil Basin. Gondwana Research, 2012, 22, 434-446.	6.0	58
44	The Deep-Time Digital Earth program: data-driven discovery in geosciences. National Science Review, 2021, 8, nwab027.	9.5	55
45	Yarlung Zangbo ophiolites (Southern Tibet) revisited: geodynamic implications from the mineral record. Geological Society Special Publication, 2003, 218, 165-190.	1.3	53
46	Paleoatmospheric pCO2 fluctuations across the Cretaceous–Tertiary boundary recorded from paleosol carbonates in NE China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 95-105.	2.3	53
47	Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction. Lithos, 2016, 245, 34-46.	1.4	52
48	Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes. Science Advances, 2021, 7, .	10.3	51
49	Reduced convergence within the Tibetan Plateau by 26ÂMa?. Geophysical Research Letters, 2017, 44, 6624-6632.	4.0	50
50	Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China. Geology, 2018, 46, 271-274.	4.4	50
51	The evolution of latitudinal temperature gradients from the latest Cretaceous through the Present. Earth-Science Reviews, 2019, 189, 147-158.	9.1	50
52	Nd isotopic compositions of the Tethyan Himalayan Sequence in southeastern Tibet. Science in China Series D: Earth Sciences, 2008, 51, 1306-1316.	0.9	49
53	Sedimentary and organic geochemical investigation of tertiary lacustrine oil shale in the central Tibetan plateau: Palaeolimnological and palaeoclimatic significances. International Journal of Coal Geology, 2011, 86, 254-265.	5.0	45
54	Late Cretaceous (Campanian) provenance change in the Songliao Basin, NE China: Evidence from detrital zircon U–Pb ages from the Yaojia and Nenjiang Formations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 83-94.	2.3	45

#	Article	IF	CITATIONS
55	Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550, 109735.	2.3	42
56	Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China. Cretaceous Research, 2005, 26, 33-41.	1.4	41
57	Continental Scientific Drilling Project of Cretaceous Songliao Basin: Scientific objectives and drilling technology. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 6-16.	2.3	41
58	Structural characteristics of the Yilan–Yitong and Dunhua–Mishan faults as northern extensions of the Tancheng–Lujiang Fault Zone: New deep seismic reflection results. Tectonophysics, 2017, 706-707, 35-45.	2.2	40
59	New paleomagnetic results of the early Permian in the Xainza area, Tibetan Plateau and their paleogeographical implications. Gondwana Research, 2012, 22, 447-460.	6.0	39
60	Defining the Limits of Greater India. Geophysical Research Letters, 2019, 46, 4182-4191.	4.0	39
61	Expanse of Greater India in the late Cretaceous. Earth and Planetary Science Letters, 2020, 542, 116330.	4.4	39
62	Disintegration and age of basement metamorphic rocks in Qiangtang, Tibet, China. Science in China Series D: Earth Sciences, 2001, 44, 86-93.	0.9	38
63	Insights into the early Tibetan Plateau from (U–Th)/He thermochronology. Journal of the Geological Society, 2013, 170, 917-927.	2.1	38
64	Internal Drainage Has Sustained Lowâ€Relief Tibetan Landscapes Since the Early Miocene. Geophysical Research Letters, 2019, 46, 8741-8752.	4.0	38
65	Late Cretaceous chronostratigraphy (Turonian–Maastrichtian): SK1 core Songliao Basin, China. Geoscience Frontiers, 2012, 3, 357-367.	8.4	35
66	The organic geochemistry of the Eocene–Oligocene black shales from the Lunpola Basin, central Tibet. Journal of Asian Earth Sciences, 2014, 79, 468-476.	2.3	35
67	Miocene adakitic intrusions in the Zhongba terrane: Implications for the origin and geochemical variations of post-collisional adakitic rocks in southern Tibet. Gondwana Research, 2017, 41, 65-76.	6.0	33
68	Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Research, 2017, 48, 224-236.	6.0	32
69	Late Eocene–Oligocene High Relief Paleotopography in the North Central Tibetan Plateau: Insights From Detrital Zircon U–Pb Geochronology and Leaf Wax Hydrogen Isotope Studies. Tectonics, 2020, 39, e2019TC005815.	2.8	32
70	Multi-stage volcanic activities and geodynamic evolution of the Lhasa terrane during the Cretaceous: Insights from the Xigaze forearc basin. Lithos, 2015, 218-219, 127-140.	1.4	31
71	Paleoenvironmental setting, mechanism and consequence of massive organic carbon burial in the Permian Junggar Basin, NW China. Journal of Asian Earth Sciences, 2020, 194, 104222.	2.3	31
72	Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo Suture Zone southern Tibet: Geodynamic implications. Gondwana Research, 2014, 25, 1263-1271.	6.0	30

#	Article	IF	CITATIONS
73	Late Cretaceous (ca. 95â∈ Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: Petrogenetic and tectonic implications. Lithos, 2018, 302-303, 389-404.	1.4	30
74	Upper Cretaceous oceanic red beds in southern Tibet: Lithofacies, environments and colour origin. Science in China Series D: Earth Sciences, 2006, 49, 785-795.	0.9	29
75	ORGANIC GEOCHEMISTRY OF POTENTIAL SOURCE ROCKS IN THE TERTIARY DINGQINGHU FORMATION, NIMA BASIN, CENTRAL TIBET. Journal of Petroleum Geology, 2011, 34, 67-85.	1.5	29
76	Modeling East Asian climate and impacts of atmospheric CO2 concentration during the Late Cretaceous (66Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 190-201.	2.3	28
77	Clay mineralogy of the middle Mingshui Formation (upper Campanian to lower Maastrichtian) from the SKIn borehole in the Songliao Basin, NE China: Implications for palaeoclimate and provenance. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 162-170.	2.3	27
78	Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 2016, 121, 34-55.	2.3	27
79	Palaeomagnetism and detrital zircon U–Pb geochronology of Cretaceous redbeds from central Tibet and tectonic implications. Geological Journal, 2018, 53, 2315-2333.	1.3	27
80	Characteristics of Early Eocene radiolarian assemblages of the Saga area, southern Tibet and their constraint on the closure history of the Tethys. Science Bulletin, 2007, 52, 2108-2114.	1.7	26
81	Geochemistry and detrital zircon U–Pb dating of Lower Cretaceous volcaniclastics in the Babazhadong section, Northern Tethyan Himalaya: Implications for the breakup of Eastern Gondwana. Cretaceous Research, 2015, 52, 127-137.	1.4	26
82	Environmental/climate change in the Cretaceous greenhouse world: Records from Terrestrial scientific drilling of Songliao Basin and adjacent areas of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 1-5.	2.3	25
83	A new paleoclimate classification for deep time. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443, 98-106.	2.3	25
84	Climate forcing of terrestrial carbon sink during the Middle Jurassic greenhouse climate: Chronostratigraphic analysis of the Yan'an Formation, Ordos Basin, North China. Bulletin of the Geological Society of America, 2021, 133, 1723-1733.	3.3	25
85	Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China. Earth-Science Reviews, 2021, 216, 103572.	9.1	25
86	Description of Cretaceous Sedimentary Sequence of the Yaojia Formation Recovered by CCSD-SK-Is Borehole in Songliao Basin: Lithostratigraphy, Sedimentary Facies and Cyclic Stratigraphy. Earth Science Frontiers, 2009, 16, 140-151.	0.6	24
87	East entral Asian Climate Evolved With the Northward Migration of the High Protoâ€Tibetan Plateau. Geophysical Research Letters, 2019, 46, 8397-8406.	4.0	24
88	Modeling the East Asian Climate During the Late Cretaceous (80 Ma). Earth Science Frontiers, 2009, 16, 226-239.	0.6	23
89	Methane-derived authigenic carbonates of mid-Cretaceous age in southern Tibet: Types of carbonate concretions, carbon sources, and formation processes. Journal of Asian Earth Sciences, 2016, 115, 153-169.	2.3	23
90	Petrogenesis and tectonic implications of Late Cretaceous highly fractionated I-type granites from the Qiangtang block, central Tibet. Journal of Asian Earth Sciences, 2019, 176, 337-352.	2.3	23

#	Article	IF	CITATIONS
91	Progress on Continental Scientific Drilling Project of Cretaceous Songliao Basin (SK-1 and SK-2). Science Bulletin, 2019, 64, 73-75.	9.0	23
92	Lithofacies, microfacies and depositional environments of Upper Cretaceous Oceanic red beds (Chuangde Formation) in southern Tibet. Sedimentary Geology, 2011, 235, 100-110.	2.1	22
93	Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications. Journal of Asian Earth Sciences, 2020, 194, 104183.	2.3	22
94	Description of Cretaceous Sedimentary Sequence of the Quantou Formation Recovered by CCSD-SK-Is Borehole in Songliao Basin: Lithostratigraphy, Sedimentary Facies and Cyclic Stratigraphy. Earth Science Frontiers, 2009, 16, 324-338.	0.6	21
95	New geochronological constraints for the Upper Cretaceous Nenjiang Formation in the Songliao Basin, NE China. Cretaceous Research, 2019, 102, 160-169.	1.4	20
96	Astronomical constraints on the development of alkaline lake during the Carboniferous-Permian Period in North Pangea. Global and Planetary Change, 2021, 207, 103681.	3.5	20
97	Dimension of Greater India in the early Mesozoic: Paleomagnetic constraints from Triassic sediments in the Tethyan Himalaya. Journal of Asian Earth Sciences, 2012, 53, 15-24.	2.3	19
98	Subsidence and exhumation of the Mesozoic Qiangtang Basin: Implications for the growth of the Tibetan plateau. Basin Research, 2019, 31, 754-781.	2.7	19
99	Diagenetic and Paleoenvironmental Controls on Late Cretaceous Clay Minerals in the Songliao Basin, Northeast China. Clays and Clay Minerals, 2015, 63, 469-484.	1.3	18
100	Mercury Evidence of Intense Volcanism Preceded Oceanic Anoxic Event 1d. Geophysical Research Letters, 2021, 48, e2020GL091508.	4.0	18
101	The Cretaceous tectonic event in the Qiangtang Basin and its implications for hydrocarbon accumulation. Petroleum Science, 2010, 7, 466-471.	4.9	17
102	Middle Jurassic–early Cretaceous radiolarian assemblages of the western Yarlung Zangbo Suture Zone: Implications for the evolution of the Neo-Tethys. Geoscience Frontiers, 2017, 8, 989-997.	8.4	17
103	Early Cretaceous (ca. 100ÂMa) magmatism in the southern Qiangtang subterrane, central Tibet: Product of slab break-off?. International Journal of Earth Sciences, 2017, 106, 1289-1310.	1.8	17
104	Large dry-humid fluctuations in Asia during the Late Cretaceous due to orbital forcing: A modeling study. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109230.	2.3	17
105	Sedimentological characteristics and aeolian architecture of a plausible intermountain erg system in Southeast China during the Late Cretaceous. Bulletin of the Geological Society of America, 2020, 132, 2475-2488.	3.3	17
106	Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2. Geology, 2021, 49, 412-416.	4.4	17
107	Phyletic evolution of the mid-Cretaceous radiolarian genus Turbocapsula from southern Tibet and its applications in zonation. Marine Micropaleontology, 2017, 130, 29-42.	1.2	16
108	Nitrogen isotopic composition of sediments from the eastern Tethys during Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 515, 123-133.	2.3	15

#	Article	IF	CITATIONS
109	Nucleation and stabilization of Eocene dolomite in evaporative lacustrine deposits from central Tibetan plateau. Sedimentology, 2020, 67, 3333-3354.	3.1	15
110	Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin. Basin Research, 2022, 34, 688-701.	2.7	15
111	Organic geochemical characterization of Upper Cretaceous oxic oceanic sediments in Tibet, China: a preliminary study. Cretaceous Research, 2005, 26, 65-71.	1.4	14
112	Balanced cross-section and crustal shortening analysis in the Tanggula-Tuotuohe Area, Northern Tibet. Journal of Earth Science (Wuhan, China), 2011, 22, 1-10.	3.2	14
113	Sedimentology and organic properties of lower Tertiary lacustrine source rocks, Lunpola Basin, central Tibetan Plateau: Implications for hydrocarbon potential. Marine and Petroleum Geology, 2015, 66, 1029-1041.	3.3	14
114	Ammonite biostratigraphy and organic carbon isotope chemostratigraphy of the early Aptian oceanic anoxic event (OAE 1a) in the Tethyan Himalaya of southern Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 531-542.	2.3	14
115	Overview of Cretaceous Oceanic Red Beds (CORBs): A Window on Global Oceanic and Climate Change. , 2009, , 13-33.		14
116	High resolution continuous sedimentary records of Upper Cretaceous obtained from the continental drilling (SK-1) borehole in Songliao Basin: Sifangtai and Mingshui Formations. Geoscience Frontiers, 2015, 6, 895-912.	8.4	13
117	An 11 million-year-long record of astronomically forced fluvial-alluvial deposition and paleoclimate change in the Early Cretaceous Songliao synrift basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 541, 109555.	2.3	13
118	Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China. Energies, 2020, 13, 2027.	3.1	12
119	Continental geological evidence for Solar System chaotic behavior in the Late Cretaceous. Bulletin of the Geological Society of America, 2023, 135, 712-724.	3.3	12
120	A Simple Analysis of Influential Factors for Cretaceous Marine Organic-rich Sediments in Southern Tibet. Earth Science Frontiers, 2009, 16, 107-117.	0.6	11
121	Petrologic characteristics and genesis of dolostone from the Campanian of the SK-I Well Core in the Songliao Basin, China. Geoscience Frontiers, 2012, 3, 669-680.	8.4	11
122	Late Triassic thickening of the Songpan–Ganzi Triassic flysch at the edge of the northeastern Tibetan Plateau. International Geology Review, 2013, 55, 2008-2015.	2.1	11
123	Controls on deposition of aquatic and terrestrial organic matter in the lacustrine Namling–Oiyug basin (Oligocene–Miocene, southern Tibet). International Journal of Coal Geology, 2015, 149, 108-117.	5.0	11
124	Formation and accumulation of lower Jurassic tight gas sands field in Kekeya area of Tuha Basin, northwestern China. Journal of Natural Gas Science and Engineering, 2016, 29, 101-109.	4.4	11
125	Clay mineralogy of the first and second members of the Nenjiang Formation, Songliao Basin: Implications for paleoenvironment in the Late Cretaceous. Science China Earth Sciences, 2018, 61, 327-338.	5.2	11
126	Late Santonian-early Campanian lake-level fluctuations in the Songliao Basin, NE China and their relationship to coeval eustatic changes. Cretaceous Research, 2018, 92, 138-149.	1.4	11

#	Article	IF	CITATIONS
127	The Late Cretaceous source-to-sink system at the eastern margin of the Tibetan Plateau: Insights from the provenance of the Lanping Basin. Geoscience Frontiers, 2021, 12, 101102.	8.4	11
128	Clay mineralogical evidence for mid-latitude terrestrial climate change from the latest Cretaceous through the earliest Paleogene in the Songliao Basin, NE China. Cretaceous Research, 2021, 124, 104827.	1.4	11
129	High-precision geochronology of the Early Cretaceous Yingcheng Formation and its stratigraphic implications for Songliao Basin, China. Geoscience Frontiers, 2022, 13, 101386.	8.4	11
130	Paleocene-Eocene potential source rocks in the Avengco Basin, Tibet: Organic geochemical characteristics and their implication for the paleoenvironment. Journal of Asian Earth Sciences, 2014, 93, 60-73.	2.3	10
131	40Ar/39Ar dating results from the Shijiatun Formation, Jiaolai Basin: New age constraints on the Cretaceous terrestrial volcanic-sedimentary sequence of China. Cretaceous Research, 2018, 86, 251-260.	1.4	10
132	Correlation of Early Cretaceous radiolarian assemblages from southern Tibet and central Italy. Cretaceous Research, 2020, 105, 104046.	1.4	10
133	Late Cretaceous provenance change in the Jiaolai Basin, East China: Implications for paleogeographic evolution of East Asia. Journal of Asian Earth Sciences, 2020, 194, 104188.	2.3	10
134	Astronomically forced variations in multiresolution resistivity logs of lower Upper Cretaceous (Cenomanian-Coniacian) terrestrial formations from the Songliao Basin, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 555, 109858.	2.3	10
135	The stabilisation of the long-term Cretaceous greenhouse climate: Contribution from the semi-periodical burial of phosphorus in the ocean. Cretaceous Research, 2012, 38, 7-15.	1.4	8
136	Interruptions of the ancient Shu Civilization: triggered by climate change or natural disaster?. International Journal of Earth Sciences, 2013, 102, 933-947.	1.8	8
137	Sedimentology, provenance and geochronology of the Miocene Qiuwu Formation: Implication for the uplift history of Southern Tibet. Geoscience Frontiers, 2017, 8, 823-839.	8.4	8
138	Sedimentologic and stratigraphic constraints on the orientation of the Late Triassic northern Indian passive continental margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109234.	2.3	8
139	A Floating Astronomical Time Scale for the Early Late Cretaceous Continental Strata in the Songliao Basin, Northeastern China. Acta Geologica Sinica, 2020, 94, 27-37.	1.4	8
140	Altitude of the East Asian Coastal Mountains and Their Influence on Asian Climate During Early Late Cretaceous. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034413.	3.3	8
141	Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, Northeast China: new insights into deep Earth exploration. Science Bulletin, 2022, 67, 1003-1006.	9.0	8
142	The Cenomanian-Turonian anoxic event in southern Tibet: A study of organic geochemistry. Diqiu Huaxue, 2001, 20, 289-295.	0.5	7
143	Kinematics of the crust around the Tanggula Shan in North–Central Tibet: Constraints from paleomagnetic data. Gondwana Research, 2017, 48, 124-133.	6.0	7
144	Paleocene Radiolarian Faunas in the Deep-Marine Sediments Near Zhongba County, southern Tibet. Paleontological Research, 2018, 22, 37-56.	1.0	7

#	Article	IF	CITATIONS
145	The burial and exhumation history of the Liuqu Conglomerate in the Yarlung Zangbo suture zone, southern Tibet: Insights from clumped isotope thermometry. Journal of Asian Earth Sciences, 2019, 174, 205-217.	2.3	7
146	Apatite and zircon (<scp>U–Th</scp>)/He thermochronological evidence for Mesozoic exhumation of the Central Tibetan Mountain Range. Geological Journal, 2021, 56, 599-611.	1.3	7
147	Hydrocarbon seepage in the mid-Cretaceous greenhouse world: A new perspective from southern Tibet. Global and Planetary Change, 2022, 208, 103683.	3.5	7
148	Deccan volcanic activity and its links to the end-Cretaceous extinction in northern China. Global and Planetary Change, 2022, 210, 103772.	3.5	7
149	Plate tectonics of Asia: Geological and geophysical constraints. Gondwana Research, 2012, 22, 353-359.	6.0	6
150	Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous: REPLY. Geology, 2016, 44, e379-e379.	4.4	6
151	Radiolarianâ€based study on the fabric and the formation process of the Early Cretaceous mélange near Zhongba, Yarlung–Tsangpo Suture Zone, southern Tibet. Island Arc, 2019, 28, e12282.	1.1	6
152	Deformation and cooling history of the Central Qiangtang terrane, Tibetan Plateau and its tectonic implications. International Geology Review, 2021, 63, 1821-1837.	2.1	6
153	Paleomagnetism of Paleoceneâ€Maastrichtian (60–70 Ma) Lava Flows From Tian Shan (Central Asia): Directional Analysis and Paleointensities. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018631.	3.4	6
154	Highâ€Altitude and Cold Habitat for the Early Cretaceous Feathered Dinosaurs at Sihetun, Western Liaoning, China. Geophysical Research Letters, 2021, 48, e2021GL094370.	4.0	6
155	Orbitally forced sea-level changes in the upper Turonian–lower Coniacian of the Tethyan Himalaya, southern Tibet. Cretaceous Research, 2015, 56, 691-701.	1.4	5
156	Multifractal characterization of the Coniacian–Santonian OAE3 in lacustrine and marine deposits based on spectral gamma ray logs. Scientific Reports, 2020, 10, 14363.	3.3	5
157	Volcanismâ€Triggered Climatic Control on Late Cretaceous Oceans. Geochemistry, Geophysics, Geosystems, 2022, 23, e2021GC010292.	2.5	5
158	New paleomagnetic results of the Upper Cretaceous to Lower Eocene sedimentary rocks from the Xigaze forearc basin and their tectonic implications. Tectonophysics, 2022, 837, 229433.	2.2	5
159	Chemical weathering characteristics of the Late Cretaceous Nenjiang Formation from the Songliao Basin (Northeastern China) reveal prominent Milankovitch band variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601, 111130.	2.3	5
160	Structural framework and its evolution in Chasang area of Qiangtang Basin in northern Tibetan. Science in China Series D: Earth Sciences, 2001, 44, 18-26.	0.9	4
161	Oligocene-Miocene source rocks of the Zhongcang Basin: Implications for hydrocarbon potential differentiation between lake basins in Central Tibet. International Journal of Coal Geology, 2018, 199, 124-137.	5.0	4
162	Source/reservoir characteristics and shale gas "sweet spot―interval in Shahezi mudstone of Well SKII in Songliao Basin, NE China. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	4

#	Article	IF	CITATIONS
163	Fineâ€grained gravity flow deposits and their depositional processes: A case study from the Cretaceous Nenjiang Formation, Songliao Basin, <scp>NE</scp> China. Geological Journal, 2021, 56, 1496-1509.	1.3	4
164	A python code for automatic construction of Fischer plots using proxy data. Scientific Reports, 2021, 11, 10518.	3.3	4
165	Remagnetization Age and Mechanism of Cretaceous Sediments in Relation to Dyke Intrusion, Hainan Island: Tectonic Implications for South China and the Red River Fault. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	4
166	SediRateâ€Fischer plots as a tool to illustrate relative seaâ€level and lakeâ€level changes in subaqueous terrigenous deposits. Sedimentology, 2022, 69, 2080-2098.	3.1	4
167	Elevation of the Gangdese Mountains and Their Impacts on Asian Climate During the Late Cretaceous—a Modeling Study. Frontiers in Earth Science, 2021, 9, .	1.8	4
168	Age of Initiation of the Indiaâ€Asia Collision in the Eastâ€Central Himalaya: A Discussion. Journal of Geology, 2006, 114, 637-640.	1.4	3
169	Paleomagnetism and microtextures reveal Neohimalayan deformation pattern in the northwestern Tethys Himalaya. Journal of Asian Earth Sciences, 2020, 202, 104516.	2.3	3
170	Fifteen years of the Chinese Continental Scientific Drilling Program. Scientific Drilling, 0, 22, 1-18.	0.6	3
171	Chemostratigraphic Analysis of Wufeng and Longmaxi Formation in Changning, Sichuan, China: Achieved by Principal Component and Constrained Clustering Analysis. Energies, 2021, 14, 7048.	3.1	3
172	Transition from oceanic subduction to continental collision in central Tibet: evidence from the Cretaceous magmatism in Qiangtang block. International Geology Review, 0, , 1-19.	2.1	3
173	Characteristics of the Shuanghu graben and Cenozoic extension in northern Tibet. Science in China Series D: Earth Sciences, 2001, 44, 284-291.	0.9	2
174	Reconstruction of meanderâ€bend migration from associated channelâ€belt architecture recorded in successions of ancient meandering rivers: A case study from the Cretaceous Songliao Basin, China. Depositional Record, 2021, 7, 416-450.	1.7	2
175	Early Jurassic palaeoclimate in Southwest China and its implications for dinosaur fossil distribution. Geological Journal, 2021, 56, 6245-6258.	1.3	2
176	Isotopic evidence for changes in the mercury and zinc cycles during Oceanic Anoxic Event 2 in the northwestern Tethys, Austria. Global and Planetary Change, 2022, 215, 103881.	3.5	2
177	Continental Scientific Drilling of Cretaceous Songliao Basin. Acta Geologica Sinica, 2019, 93, 4-4.	1.4	1
178	Controlling Factors for Organic Carbon Burial in the Late Cretaceous Nenjiang Formation of the Songliao Basin, NE China. Energies, 2021, 14, 4783.	3.1	1
179	Oligo-Miocene evolution of the Tuotuohe Basin (headwaters of the Yangtze River) and its significance for the uplift history of the central Tibetan Plateau. Himalayan Journal of Sciences, 2006, 2, 201.	0.3	1
180	Hydrocarbon Potential of the Late Permian and the Late Triassic Source Rocks from the Qamdo (Changdu) Basin, Eastern Tibet and Its Linkage with the Sea Level Change. Frontiers in Earth Science, 2021, 9, .	1.8	1

#	Article	IF	CITATIONS
181	Characterizing subseismic faults from SK-2 drilling core (2900–4200Âm): Implication for reservoir transmissibility and regional tectonic evolution. Interpretation, 2020, 8, SG1-SG11.	1.1	0
182	Sm-Nd isotopic compositions of deep-marine mudstones, Xigaze forearc basin, southern Tibet: implications for drainage evolution and expansion. Journal of Asian Earth Sciences, 2022, , 105228.	2.3	0