Yf Zheng

List of Publications by Citations

Source: https://exaly.com/author-pdf/5938179/yf-zheng-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39,466 160 825 95 h-index g-index citations papers 48,663 867 7.7 7.95 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
825	Biodegradable metals. <i>Materials Science and Engineering Reports</i> , 2014 , 77, 1-34	30.9	1355
824	Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, 1998, 130-137	0.9	1286
823	The development of binary Mg-Ca alloys for use as biodegradable materials within bone. <i>Biomaterials</i> , 2008 , 29, 1329-44	15.6	1166
822	In vitro corrosion and biocompatibility of binary magnesium alloys. <i>Biomaterials</i> , 2009 , 30, 484-98	15.6	986
821	Biomimetic porous scaffolds for bone tissue engineering. <i>Materials Science and Engineering Reports</i> , 2014 , 80, 1-36	30.9	666
820	Novel Magnesium Alloys Developed for Biomedical Application: A Review. <i>Journal of Materials Science and Technology</i> , 2013 , 29, 489-502	9.1	446
819	Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures. <i>ACS Nano</i> , 2017 , 11, 9010-9021	16.7	416
818	Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. <i>Nature Medicine</i> , 2016 , 22, 1160-1169	50.5	410
817	A review on magnesium alloys as biodegradable materials. <i>Frontiers of Materials Science in China</i> , 2010 , 4, 111-115		369
816	Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. <i>Biomaterials</i> , 2010 , 31, 1093-103	3 15.6	316
815	Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. <i>Acta Biomaterialia</i> , 2011 , 7, 1880-9	10.8	305
814	In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. <i>Acta Biomaterialia</i> , 2012 , 8, 2360-74	10.8	296
813	Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. <i>Materials Science and Engineering C</i> , 2010 , 30, 1204-1210	8.3	289
812	Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. <i>Journal of Endodontics</i> , 2013 , 39, 163-72	4.7	285
811	Additive manufacturing of ultrafine-grained high-strength titanium alloys. <i>Nature</i> , 2019 , 576, 91-95	50.4	276
810	Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Near-Infrared Light. <i>Advanced Materials</i> , 2018 , 30, e1801808	24	256
809	Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. <i>Applied Surface Science</i> , 2009 , 255, 6433-6438	6.7	253

808	Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. <i>Acta Biomaterialia</i> , 2011 , 7, 1407-20	10.8	239
807	Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. <i>Acta Biomaterialia</i> , 2010 , 6, 4605-13	10.8	238
806	Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. <i>Biomaterials</i> , 2016 , 75, 203-222	15.6	230
805	Progress of biodegradable metals. <i>Progress in Natural Science: Materials International</i> , 2014 , 24, 414-427	23.6	222
804	Recent advances in bulk metallic glasses for biomedical applications. <i>Acta Biomaterialia</i> , 2016 , 36, 1-20	10.8	220
803	Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. <i>Carbon</i> , 2014 , 67, 185-197	10.4	213
802	Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review. <i>Acta Biomaterialia</i> , 2018 , 79, 23-36	10.8	211
801	Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation and Differentiation To Promote Bacteria-Accompanied Wound Healing. <i>ACS Nano</i> , 2018 , 12, 1747-1759	16.7	209
800	Physical properties of 5 root canal sealers. <i>Journal of Endodontics</i> , 2013 , 39, 1281-6	4.7	208
799	Corrosion and characterisation of dual phase MgIlita alloy in Hankt solution: The influence of microstructural features. <i>Corrosion Science</i> , 2014 , 79, 69-82	6.8	206
798	Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. <i>Acta Biomaterialia</i> , 2016 , 45, 2-30	10.8	203
797	Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. <i>Acta Biomaterialia</i> , 2015 , 21, 237-49	10.8	201
796	In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(L-lactic acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 10014-28	9.5	194
795	Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. <i>Scientific Reports</i> , 2015 , 5, 10719	4.9	187
794	A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. <i>Acta Biomaterialia</i> , 2009 , 5, 2790-9	10.8	183
793	In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 475-484	7.3	181
792	Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires. <i>Journal of the American Ceramic Society</i> , 2000 , 83, 3228-3230	3.8	181
791	Balancing Bacteria-Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods. <i>ACS Nano</i> , 2017 , 11, 11250-11263	16.7	178

790	Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires. <i>Advanced Materials</i> , 2000 , 12, 1343-1345	24	175
7 ⁸ 9	Synergistic Bacteria Killing through Photodynamic and Physical Actions of Graphene Oxide/Ag/Collagen Coating. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 26417-26428	9.5	173
788	Rapid Sterilization and Accelerated Wound Healing Using Zn2+ and Graphene Oxide Modified g-C3N4 under Dual Light Irradiation. <i>Advanced Functional Materials</i> , 2018 , 28, 1800299	15.6	173
787	Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. <i>Nature Communications</i> , 2019 , 10, 4490	17.4	170
786	Tuning the Bandgap of Photo-Sensitive Polydopamine/AgPO/Graphene Oxide Coating for Rapid, Noninvasive Disinfection of Implants. <i>ACS Central Science</i> , 2018 , 4, 724-738	16.8	168
785	Functionalized TiO2 Based Nanomaterials for Biomedical Applications. <i>Advanced Functional Materials</i> , 2014 , 24, 5464-5481	15.6	168
784	Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. <i>Biomaterials</i> , 2017 , 145, 92-105	15.6	168
783	Fabrication and characterization of three-dimensional nanofiber membrance of PCLIMWCNTs by electrospinning. <i>Materials Science and Engineering C</i> , 2010 , 30, 1014-1021	8.3	168
782	Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. <i>Materials and Design</i> , 2015 , 83, 95-102	8.1	166
781	Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 84, 97-102	6	165
78o	Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. <i>Applied Physics Letters</i> , 1999 , 75, 2990-2992	3.4	159
779	Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys. <i>Acta Biomaterialia</i> , 2014 , 10, 544-56	10.8	157
778	In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model. <i>Biomaterials</i> , 2015 , 64, 57-69	15.6	152
777	Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections. <i>Journal of Endodontics</i> , 2006 , 32, 372-5	4.7	148
776	Micro-alloying with Mn in ZnMg alloy for future biodegradable metals application. <i>Materials and Design</i> , 2016 , 94, 95-104	8.1	146
775	Highly Effective and Noninvasive Near-Infrared Eradication of a Biofilm on Implants by a Photoresponsive Coating within 20 Min. <i>Advanced Science</i> , 2019 , 6, 1900599	13.6	142
774	Advances in coatings on biodegradable magnesium alloys. <i>Journal of Magnesium and Alloys</i> , 2020 , 8, 42	- 655 8	141
773	A General Synthetic Route to III-V Compound Semiconductor Nanowires. <i>Advanced Materials</i> , 2001 , 13, 591-594	24	140

(2018-2020)

772	Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. <i>Applied Catalysis B: Environmental</i> , 2020 , 261, 118248	21.8	140
771	Zinc-Based Biomaterials for Regeneration and Therapy. <i>Trends in Biotechnology</i> , 2019 , 37, 428-441	15.1	134
770	Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2352-7	11.8	133
769	Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. <i>Acta Biomaterialia</i> , 2015 , 11, 554-62	10.8	132
768	In vitro cytotoxicity evaluation of a novel root repair material. <i>Journal of Endodontics</i> , 2013 , 39, 478-83	4.7	129
767	Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals. <i>Journal of Materials Science and Technology</i> , 2013 , 29, 619-627	9.1	127
766	Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. <i>Materials Science and Engineering C</i> , 2010 , 30, 827-832	8.3	127
765	Electrophoretic Deposited Stable Chitosan@MoS Coating with Rapid In Situ Bacteria-Killing Ability under Dual-Light Irradiation. <i>Small</i> , 2018 , 14, e1704347	11	125
764	Effect of ageing treatment on the transformation behaviour of TiB0.9at.% Ni alloy. <i>Acta Materialia</i> , 2008 , 56, 736-745	8.4	125
763	Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. <i>Nature Communications</i> , 2020 , 11, 401	17.4	124
762	In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. <i>Acta Biomaterialia</i> , 2010 , 6, 1783-91	10.8	124
761	Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. <i>Acta Biomaterialia</i> , 2011 , 7, 2758-67	10.8	119
760	In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. <i>Acta Biomaterialia</i> , 2013 , 9, 8561-73	10.8	117
759	Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition. <i>Chemical Physics Letters</i> , 2000 , 327, 263-270	2.5	117
758	Dopamine Modified Organic-Inorganic Hybrid Coating for Antimicrobial and Osteogenesis. <i>ACS Applied Materials & Dopamine Materials & Do</i>	9.5	117
757	In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. <i>Acta Biomaterialia</i> , 2018 , 71, 200-214	10.8	116
756	In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. <i>Materials Letters</i> , 2011 , 65, 540-543	3.3	116
755	An overview of graphene-based hydroxyapatite composites for orthopedic applications. <i>Bioactive Materials</i> , 2018 , 3, 1-18	16.7	115

754	Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. <i>Materials Chemistry and Physics</i> , 2011 , 125, 606-611	4.4	115
753	Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zna.5Mg alloy. <i>Journal of Alloys and Compounds</i> , 2016 , 664, 444-45	52 ^{5.7}	112
75 ²	Tailored Surface Treatment of 3D Printed Porous Ti6Al4V by Microarc Oxidation for Enhanced Osseointegration via Optimized Bone In-Growth Patterns and Interlocked Bone/Implant Interface. <i>ACS Applied Materials & Discourse ACS Applied Materials & Discourse Materials</i>	9.5	112
751	Fundamental Theory of Biodegradable Metals Definition, Criteria, and Design. <i>Advanced Functional Materials</i> , 2019 , 29, 1805402	15.6	111
75°	Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. <i>Acta Biomaterialia</i> , 2018 , 77, 352-364	10.8	111
749	Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. Journal of Endodontics, 2011 , 37, 1566-71	4.7	111
748	Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500494	4.6	111
747	A biomimetic hierarchical scaffold: natural growth of nanotitanates on three-dimensional microporous Ti-based metals. <i>Nano Letters</i> , 2008 , 8, 3803-8	11.5	110
746	Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. <i>Biomaterials Science</i> , 2018 , 6, 2110-2121	7.4	110
745	Biofunctionalization of metallic implants by calcium phosphate coatings. <i>Bioactive Materials</i> , 2019 , 4, 196-206	16.7	109
744	Biodegradable CaMgZn bulk metallic glass for potential skeletal application. <i>Acta Biomaterialia</i> , 2011 , 7, 3196-208	10.8	109
743	Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel ZnMgBr alloys as biodegradable metals. <i>Materials Letters</i> , 2016 , 162, 242-245	3.3	108
742	Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 19, 27453-27461	9.5	108
74 ¹	Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. <i>Acta Biomaterialia</i> , 2013 , 9, 8488-98	10.8	107
74º	Rapid and Superior Bacteria Killing of Carbon Quantum Dots/ZnO Decorated Injectable Folic Acid-Conjugated PDA Hydrogel through Dual-Light Triggered ROS and Membrane Permeability. <i>Small</i> , 2019 , 15, e1900322	11	105
739	In vitro cytotoxicity of calcium silicate-containing endodontic sealers. <i>Journal of Endodontics</i> , 2015 , 41, 56-61	4.7	100
738	In vitro degradation performance and biological response of a Mg@n@r alloy. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1778-1784	3.1	100
737	Surface functionalization of biomaterials by radical polymerization. <i>Progress in Materials Science</i> , 2016 , 83, 191-235	42.2	99

(2008-2020)

736	Rapid Photo-Sonotherapy for Clinical Treatment of Bacterial Infected Bone Implants by Creating Oxygen Deficiency Using Sulfur Doping. <i>ACS Nano</i> , 2020 , 14, 2077-2089	16.7	98
735	In Situ Disinfection through Photoinspired Radical Oxygen Species Storage and Thermal-Triggered Release from Black Phosphorous with Strengthened Chemical Stability. <i>Small</i> , 2018 , 14, 1703197	11	98
734	Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. <i>Applied Surface Science</i> , 2008 , 255, 494-497	6.7	97
733	The recent progress on metal-organic frameworks for phototherapy. <i>Chemical Society Reviews</i> , 2021 , 50, 5086-5125	58.5	96
732	Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration. <i>ACS Applied Materials & District Acros</i> , 2018, 10, 1266-1277	, 9.5	96
731	High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. <i>Biomaterials</i> , 2016 , 81, 14-26	15.6	95
730	Additive manufacturing of biodegradable metals: Current research status and future perspectives. <i>Acta Biomaterialia</i> , 2019 , 98, 3-22	10.8	92
729	Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. <i>Biomaterials</i> , 2018 , 174, 1-16	15.6	92
728	In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 88, 254-9	6	92
727	Microstructures of gallium nitride nanowires synthesized by oxide-assisted method. <i>Chemical Physics Letters</i> , 2001 , 345, 377-380	2.5	92
726	Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization. <i>European Polymer Journal</i> , 2008 , 44, 2476-2481	5.2	91
725	Photo-responsive chitosan/Ag/MoS for rapid bacteria-killing. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121122	12.8	91
724	Local Photothermal/Photodynamic Synergistic Therapy by Disrupting Bacterial Membrane To Accelerate Reactive Oxygen Species Permeation and Protein Leakage. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 17902-17914	9.5	88
723	Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. <i>Biomaterials</i> , 2013 , 34, 7016-32	15.6	88
722	Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. <i>Materials Letters</i> , 2010 , 64, 1871-1874	3.3	87
721	In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy. <i>Applied Surface Science</i> , 2012 , 258, 3420-3427	6.7	86
720	Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. <i>Biomaterials</i> , 2011 , 32, 330-8	15.6	86
719	Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films. <i>Talanta</i> , 2008 , 74, 1414-9	6.2	86

718	In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants. <i>Biomaterials</i> , 2013 , 34, 9863-76	15.6	83
717	A review on in vitro corrosion performance test of biodegradable metallic materials. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 2283-2293	3.3	83
716	Effect of aging on the phase transformation and mechanical behavior of Ti36Ni49Hf15 high temperature shape memory alloy. <i>Scripta Materialia</i> , 2000 , 42, 341-348	5.6	83
715	In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering. <i>Materials Science and Engineering C</i> , 2014 , 35, 43-53	8.3	82
714	Bioinspired and Biomimetic AgNPs/Gentamicin-Embedded Silk Fibroin Coatings for Robust Antibacterial and Osteogenetic Applications. <i>ACS Applied Materials & District Applied Materials & Distr</i>	84 <i>&</i>	82
713	The application of poly (glycerol-sebacate) as biodegradable drug carrier. <i>Biomaterials</i> , 2009 , 30, 5209-	1 4 5.6	82
712	Interfacial engineering of BiS/TiCT MXene based on work function for rapid photo-excited bacteria-killing. <i>Nature Communications</i> , 2021 , 12, 1224	17.4	82
711	Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys. <i>Biomedical Materials (Bristol)</i> , 2009 , 4, 065011	3.5	81
710	Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. <i>Materials Science and Engineering C</i> , 2015 , 46, 202-6	8.3	80
709	Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants. <i>ACS Applied Materials</i> & Samp; Interfaces, 2016 , 8, 16584-94	9.5	80
708	Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures. <i>Applied Surface Science</i> , 2017 , 400, 14-23	6.7	79
707	Eradicating Multidrug-Resistant Bacteria Rapidly Using a Multi Functional g-C3N4@ Bi2S3 Nanorod Heterojunction with or without Antibiotics. <i>Advanced Functional Materials</i> , 2019 , 29, 1900946	15.6	79
706	Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing. <i>Acta Materialia</i> , 2007 , 55, 3437-3451	8.4	79
705	Shape memory properties of the Ti36Ni49Hf15 high temperature shape memory alloy. <i>Materials Letters</i> , 2000 , 45, 128-132	3.3	79
704	Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. <i>Nature Communications</i> , 2020 , 11, 4446	17.4	79
703	The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 8, 1-7	4.1	78
702	In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. <i>Biomedical Materials (Bristol)</i> , 2010 , 5, 065015	3.5	78
701	Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. <i>Chemical Engineering Journal</i> , 2020 , 396, 125194	14.7	77

(2013-2016)

700	Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate. <i>Journal of Materials Science: Materials in Medicine</i> , 2016 , 27, 48	4.5	77	
699	In vitro degradation of AZ31 magnesium alloy coated with nano TiO2 film by solgel method. <i>Applied Surface Science</i> , 2011 , 257, 8772-8777	6.7	77	
698	Corrosion behaviour of TiNbBn shape memory alloys in different simulated body solutions. <i>Materials Science & Discourse and Processing</i> , 2006 , 438-440, 891-895	5.3	77	
697	A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light. <i>Bioactive Materials</i> , 2019 , 4, 17-21	16.7	76	
696	Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. <i>Acta Biomaterialia</i> , 2019 , 98, 174-185	10.8	75	
695	The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy. <i>Scripta Materialia</i> , 1999 , 40, 1327-1331	5.6	75	
694	Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zna.2Mg alloy for biodegradable implants. <i>RSC Advances</i> , 2016 , 6, 86410-86419	3.7	74	
693	Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. <i>Applied Physics Letters</i> , 2001 , 78, 3304-3306	3.4	74	
692	Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity. <i>ACS Applied Materials & Description of the Sustainal States and Property and Materials & Description of the Sustainal States and Property an</i>	9.5	73	
691	The enhanced photocatalytic properties of MnO/g-CN heterostructure for rapid sterilization under visible light. <i>Journal of Hazardous Materials</i> , 2019 , 377, 227-236	12.8	73	
690	Characterization of TiN, TiC and TiCN coatings on TiB0.6 at.% Ni alloy deposited by PIII and deposition technique. <i>Surface and Coatings Technology</i> , 2007 , 201, 4909-4912	4.4	73	
689	Electrochemical corrosion behavior of biomedical TiØ2Nb and TiØ2NbBZr alloys in saline medium. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2009 , 60, 788-794	1.6	72	
688	Corrosion resistance of dicalcium phosphate dihydrate/poly(lactic-co-glycolic acid) hybrid coating on AZ31 magnesium alloy. <i>Corrosion Science</i> , 2016 , 102, 209-221	6.8	71	
687	Polymeric nanoarchitectures on Ti-based implants for antibacterial applications. <i>ACS Applied Materials & Discourse Materials & Disc</i>	9.5	71	
686	Mechanical properties of controlled memory and superelastic nickel-titanium wires used in the manufacture of rotary endodontic instruments. <i>Journal of Endodontics</i> , 2012 , 38, 1535-40	4.7	71	
685	Effects of carbon and nitrogen plasma immersion ion implantation on in vitro and in vivo biocompatibility of titanium alloy. ACS Applied Materials & amp; Interfaces, 2013, 5, 1510-6	9.5	70	
684	Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. <i>Materials Science and Engineering C</i> , 2012 , 32, 599-606	8.3	69	
683	Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings. <i>Applied Surface Science</i> , 2013 , 284, 804-810	6.7	69	

682	Effect of Ag on the corrosion behavior of Ti-Ag alloys in artificial saliva solutions. <i>Dental Materials</i> , 2009 , 25, 672-7	5.7	69
681	Additively Manufactured Macroporous Titanium with Silver-Releasing Micro-/Nanoporous Surface for Multipurpose Infection Control and Bone Repair - A Proof of Concept. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 28495-28510	9.5	69
68o	Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. <i>Materials Science and Engineering C</i> , 2013 , 33, 699-706	8.3	68
679	Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: a numerical analysis. <i>Journal of Endodontics</i> , 2010 , 36, 1394-8	4.7	68
678	Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan. <i>Biomedical Materials (Bristol)</i> , 2009 , 4, 044109	3.5	68
677	Effects of Sn content on the microstructure, phase constitution and shape memory effect of TiNbBn alloys. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2008 , 486, 146-151	5.3	68
676	Synthesis and microstructure of gallium phosphide nanowires. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2001 , 19, 1115		68
675	Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant Biofilm Infection on Bone Implant. <i>ACS Nano</i> , 2020 , 14, 8157-8170	16.7	67
674	Stress-free two-way thermoelastic shape memory and field-enhanced strain in Ni52Mn24Ga24 single crystals. <i>Applied Physics Letters</i> , 2000 , 77, 3245-3247	3.4	67
673	Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. <i>Materials Science and Engineering C</i> , 2017 , 79, 629-637	8.3	66
672	In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals. <i>Journal of Materials Science and Technology</i> , 2016 , 32, 909-918	9.1	66
671	Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. <i>Acta Biomaterialia</i> , 2019 , 97, 23-45	10.8	66
670	Fabrication of chitosan/magnesium phosphate composite coating and the in vitro degradation properties of coated magnesium alloy. <i>Materials Letters</i> , 2012 , 73, 59-61	3.3	66
669	Formation mechanism of Ca-deficient hydroxyapatite coating on MgInIIa alloy for orthopaedic implant. <i>Applied Surface Science</i> , 2014 , 307, 92-100	6.7	66
668	Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. <i>Acta Biomaterialia</i> , 2016 , 41, 351-60	10.8	66
667	Dual Metal-Organic Framework Heterointerface. ACS Central Science, 2019, 5, 1591-1601	16.8	65
666	Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. <i>Acta Biomaterialia</i> , 2019 , 98, 196-214	10.8	65
665	Control of growth orientation of GaN nanowires. <i>Chemical Physics Letters</i> , 2002 , 359, 241-245	2.5	65

(2020-2017)

664	Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 151, 165-177	6	64
663	In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material. <i>Materials Letters</i> , 2015 , 161, 53-56	3.3	64
662	The influence of laser welding parameters on the microstructure and mechanical property of the as-jointed NiTi alloy wires. <i>Materials Letters</i> , 2008 , 62, 2325-2328	3.3	63
661	Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. Journal of Materials Science, 2006 , 41, 4961-4964	4.3	63
660	A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell. <i>Chemical Physics Letters</i> , 2008 , 457, 381-385	2.5	62
659	Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. <i>Acta Biomaterialia</i> , 2020 , 102, 508-528	10.8	62
658	From Solution to Biointerface: Graphene Self-Assemblies of Varying Lateral Sizes and Surface Properties for Biofilm Control and Osteodifferentiation. <i>ACS Applied Materials & Control and Osteodifferentiation</i> . <i>ACS Applied Materials & Control and Osteodifferentiation</i> . 8, 17151-65	9.5	62
657	Metal Ion Coordination Polymer-Capped pH-Triggered Drug Release System on Titania Nanotubes for Enhancing Self-antibacterial Capability of Ti Implants. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 816-825	5.5	61
656	Stress-induced martensitic transformation behavior of a TiNiHf high temperature shape memory alloy. <i>Materials Letters</i> , 2002 , 55, 111-115	3.3	60
655	Rapid and Highly Effective Noninvasive Disinfection by Hybrid Ag/CS@MnO Nanosheets Using Near-Infrared Light. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 15014-15027	9.5	59
654	Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation. <i>Journal of Alloys and Compounds</i> , 2014 , 590, 247-253	5.7	59
653	Plasma-modified biomaterials for self-antimicrobial applications. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2011 , 3, 2851-60	9.5	59
652	Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell. <i>Biosensors and Bioelectronics</i> , 2009 , 25, 463-8	11.8	59
651	Micro-arc oxidization of a novel MgIICa alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity. <i>Applied Surface Science</i> , 2014 , 292, 1030-1039	6.7	58
650	Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film. <i>Applied Surface Science</i> , 2012 , 258, 3074-3081	6.7	58
649	In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2013 , 101, 485-5	9 3 ·5	58
648	Smallest diameter carbon nanotubes. <i>Applied Physics Letters</i> , 2000 , 77, 2831-2833	3.4	58
647	Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc. <i>Biomaterials</i> , 2020 , 230, 119641	15.6	58

646	Enhanced in Vitro and in Vivo Performance of Mg-Zn-Y-Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application. <i>ACS Applied Materials & Drug-Eluting Vascular Stent Application</i> . <i>ACS Applied Materials & Drug-Eluting Vascular Stent Application</i> .	9.5	58
645	Visible light responsive CuS/ protonated g-CN heterostructure for rapid sterilization. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122423	12.8	57
644	In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications. <i>ACS Applied Materials & Discourse (Magnesium Low-Alloying With Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Discourse (Magnesium Low-Alloying With Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Discourse (Magnesium Low-Alloying With Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Discourse (Magnesium Low-Alloying With Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Discourse (Magnesium Low-Alloying With Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Discourse (Magnesium Low-Alloying With Elements Gadolinium and Magnesium Low-Alloying With Elements (Magnesium Low-Alloying With Elements Gadolinium and Magnesium Low-Alloying With Elements (Magnesium Low-Alloying</i>	9.5	57
643	Microstructure, corrosion behavior and cytotoxicity of ZrNb alloys for biomedical application. <i>Materials Science and Engineering C</i> , 2012 , 32, 851-857	8.3	57
642	Atomic layer deposited ZrO nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility. <i>Acta Biomaterialia</i> , 2017 , 58, 515-526	10.8	56
641	Two-way shape memory effect of a TiNiHf high temperature shape memory alloy. <i>Journal of Alloys and Compounds</i> , 2004 , 372, 180-186	5.7	56
640	Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating. <i>Materials and Design</i> , 2018 , 139, 351-362	8.1	56
639	Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. <i>Acta Biomaterialia</i> , 2017 , 64, 421-436	10.8	55
638	Tannic Acid/Fe/Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity. <i>ACS Applied Materials & District Activity</i> , 9, 39657-39671	9.5	55
637	Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. <i>ACS Applied Materials & Damp; Interfaces</i> , 2019 , 11, 6809-6819	9.5	55
636	Multifunctional MgF2/Polydopamine Coating on Mg Alloy for Vascular Stent Application. <i>Journal of Materials Science and Technology</i> , 2015 , 31, 733-743	9.1	55
635	Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank solution. <i>Corrosion Engineering Science and Technology</i> , 2012 , 47, 346-351	1.7	55
634	Amorphous carbon nanowires investigated by near-edge-x-ray-absorption-fine-structures. <i>Applied Physics Letters</i> , 2001 , 79, 3773-3775	3.4	55
633	Graphitic carbon nitride-based materials for photocatalytic antibacterial application. <i>Materials Science and Engineering Reports</i> , 2021 , 145, 100610	30.9	55
632	The microstructure and linear superelasticity of cold-drawn TiNi alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2000 , 279, 25-35	5.3	54
631	Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial property. Journal of Materials Chemistry B, 2015 , 3, 6676-6689	7.3	53
630	A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration. <i>Materials Today</i> , 2020 , 36, 48-62	21.8	53
629	In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition. <i>Journal of Biomedical Materials Research - Part B</i> Applied Biometerials 2012, 100, 533-43	3.5	53

(2021-2016)

628	Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: a pH-responsive design. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2498-2511	7.3	52
627	HyFlex nickel-titanium rotary instruments after clinical use: metallurgical properties. <i>International Endodontic Journal</i> , 2013 , 46, 720-9	5.4	52
626	Effect of ageing treatment on the deformation behaviour of TiBo.9 at.% Ni. <i>Acta Materialia</i> , 2009 , 57, 4773-4781	8.4	52
625	Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface. <i>Applied Surface Science</i> , 2011 , 257, 5634-5640	6.7	52
624	Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. <i>Materials Science and Engineering C</i> , 2015 , 46, 387-93	8.3	51
623	Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation. <i>Applied Surface Science</i> , 2012 , 258, 7651-7657	6.7	51
622	A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. <i>International Endodontic Journal</i> , 2011 , 44, 357-61	5.4	51
621	Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr(Mo,Hf) eutectic alloys. <i>Materials & Design</i> , 2011 , 32, 4810-4817		51
620	Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application. <i>Journal of Materials Science: Materials in Medicine</i> , 2010 , 21, 2001-8	4.5	51
619	Gelatin-functionalized carbon nanotubes for the bioelectrochemistry of hemoglobin. <i>Electrochemistry Communications</i> , 2007 , 9, 1619-1623	5.1	51
618	An amperometric biosensor based on hemoglobin immobilized in poly(epsilon-caprolactone) film and its application. <i>Biosensors and Bioelectronics</i> , 2008 , 23, 1562-6	11.8	51
617	Interfacial Zinc Phosphate is the Key to Controlling Biocompatibility of Metallic Zinc Implants. <i>Advanced Science</i> , 2019 , 6, 1900112	13.6	50
616	In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. <i>Acta Biomaterialia</i> , 2020 , 108, 358-372	10.8	50
615	Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@BiWO coating for rapid bacterial killing. <i>Journal of Hazardous Materials</i> , 2019 , 380, 120818	12.8	50
614	In vitro Study on Biodegradable AZ31 Magnesium Alloy Fibers Reinforced PLGA Composite. <i>Journal of Materials Science and Technology</i> , 2013 , 29, 545-550	9.1	50
613	Electrospun Chitosan-graft-PLGA nanofibres with significantly enhanced hydrophilicity and improved mechanical property. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 102, 674-81	6	50
612	Photoresponsive Materials for Antibacterial Applications. <i>Cell Reports Physical Science</i> , 2020 , 1, 100245	6.1	50
611	AgPO decorated black urchin-like defective TiO for rapid and long-term bacteria-killing under visible light. <i>Bioactive Materials</i> , 2021 , 6, 1575-1587	16.7	50

A functionalized TiO/MgTiO nano-layer on biodegradable magnesium implant enables superior

Effect of surface mechanical attrition treatment on biodegradable Mg-1Ca alloy. Materials Science

bone-implant integration and bacterial disinfection. Biomaterials, 2019, 219, 119372

15.6

8.3

46

46

and Engineering C, **2014**, 35, 314-21

594

593

(2020-2013)

592	In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material. <i>Materials Science and Engineering C</i> , 2013 , 33, 3489-97	8.3	46	
591	Improvement of compressive strength and ductility in NiAl C r(Nb)/Dy alloy by rapid solidification and HIP treatment. <i>Intermetallics</i> , 2012 , 27, 14-20	3.5	46	
590	Corrosion behaviour and biocompatibility evaluation of low modulus Till6Nb shape memory alloy as potential biomaterial. <i>Materials Letters</i> , 2009 , 63, 1293-1295	3.3	46	
589	Surface characterization and mechanical property of TiN/Ti-coated NiTi alloy by PIIID. <i>Surface and Coatings Technology</i> , 2007 , 201, 6869-6873	4.4	46	
588	Surface characteristics and corrosion resistance properties of TiNi shape memory alloy coated with Ta. <i>Surface and Coatings Technology</i> , 2004 , 186, 346-352	4.4	46	
587	Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys. <i>Materials Science and Engineering C</i> , 2019 , 97, 156-165	8.3	46	
586	Influence of annealing on NiTi shape memory alloy subjected to severe plastic deformation. <i>Intermetallics</i> , 2013 , 32, 344-351	3.5	45	
585	Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits. <i>Biomaterials</i> , 2018 , 157, 86-97	15.6	45	
584	Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. <i>Bioactive Materials</i> , 2017 , 2, 44-50	16.7	44	
583	Rapid Biofilm Elimination on Bone Implants Using Near-Infrared-Activated Inorganic Semiconductor Heterostructures. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900835	10.1	44	
582	Enhancing the antibacterial efficacy of low-dose gentamicin with 5 minute assistance of photothermy at 50 °C. <i>Biomaterials Science</i> , 2019 , 7, 1437-1447	7.4	44	
581	Plasma Surface Functionalized Polyetheretherketone for Enhanced Osseo-Integration at Bone-Implant Interface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 3901-11	9.5	44	
580	Ag2[email[protected]2 Heterostructure for Rapid Bacteria-Killing Using Near-Infrared Light. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 14982-14990	8.3	44	
579	Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel. <i>Dental Materials</i> , 2011 , 27, 677-83	5.7	44	
578	Comparative study on the corrosion behavior of TiNb and TMA alloys for dental application in various artificial solutions. <i>Materials Science and Engineering C</i> , 2011 , 31, 702-711	8.3	44	
577	A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy. <i>Applied Surface Science</i> , 2018 , 434, 1101-1111	6.7	44	
576	Recent Development of TiNi-Based Shape Memory Alloys with High Cycle Stability and High Transformation Temperature. <i>Advanced Engineering Materials</i> , 2020 , 22, 1900496	3.5	43	
575	In-situ sulfuration of Cu-based metal-organic framework for rapid near-infrared light sterilization. Journal of Hazardous Materials, 2020 , 390, 122126	12.8	43	

574	Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. <i>Acta Biomaterialia</i> , 2017 , 62, 418-433	10.8	43
573	An overview of the mechanical properties of nickellitanium endodontic instruments. <i>Endodontic Topics</i> , 2013 , 29, 42-54		43
572	Corrosion resistance and cytotoxicity of a MgF2 coating on biomedical MgIlCa alloy via vacuum evaporation deposition method. <i>Surface and Interface Analysis</i> , 2013 , 45, 1217-1222	1.5	43
571	Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 8324-8331	5.3	43
57°	Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance. <i>Acta Biomaterialia</i> , 2016 , 45, 387-398	10.8	42
569	In Vitro Study on MgBnMn Alloy as Biodegradable Metals. <i>Journal of Materials Science and Technology</i> , 2014 , 30, 675-685	9.1	42
568	Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 2277-	-87 ⁴	42
567	Thermal degradation kinetics of g-HA/PLA composite. <i>Thermochimica Acta</i> , 2009 , 493, 90-95	2.9	42
566	Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids. <i>Electrochemistry Communications</i> , 2009 , 11, 2187-2190	5.1	42
565	Phase transformation behavior and mechanical properties of thermomechanically treated K3XF nickel-titanium instruments. <i>Journal of Endodontics</i> , 2013 , 39, 919-23	4.7	41
564	In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys. <i>Biomedical Materials (Bristol)</i> , 2010 , 5, 044102	3.5	41
563	Effect of ball milling and post-annealing on magnetic properties of Ni49.8Mn28.5Ga21.7 alloy powders. <i>Intermetallics</i> , 2008 , 16, 1279-1284	3.5	41
562	Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. <i>Science Advances</i> , 2021 , 7,	14.3	41
561	Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review. <i>Acta Metallurgica Sinica (English Letters)</i> , 2020 , 33, 615-629	2.5	41
560	Ultrasonic Interfacial Engineering of Red Phosphorous-Metal for Eradicating MRSA Infection Effectively. <i>Advanced Materials</i> , 2021 , 33, e2006047	24	41
559	Degradable, absorbable or resorbable what is the best grammatical modifier for an implant that is eventually absorbed by the body?. <i>Science China Materials</i> , 2017 , 60, 377-391	7.1	4 0
558	Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation. <i>ACS Applied Materials & Description of Stimulating Immunomodulation (Nature of Stimulating Immunomodulation)</i>	9.5	40
557	In vitro study on equal channel angular pressing AZ31 magnesium alloy with and without back pressure. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1802-1806	3.1	40

556	Rapid degradation of biomedical magnesium induced by zinc ion implantation. <i>Materials Letters</i> , 2011 , 65, 661-663	3.3	40
555	In vitro study on Zr-based bulk metallic glasses as potential biomaterials. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2011 , 96, 34-46	3.5	40
554	In vitro corrosion and cytotoxicity on microcrystalline, nanocrystalline and amorphous NiTi alloy fabricated by high pressure torsion. <i>Materials Letters</i> , 2010 , 64, 983-986	3.3	40
553	AgBr Nanoparticles in Situ Growth on 2D MoS Nanosheets for Rapid Bacteria-Killing and Photodisinfection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 34364-34375	9.5	39
552	Effects of Nd on microstructures and properties of extruded MgZZnD.46YNNd alloys for stent application. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1673-1678	3.1	39
551	A novel amperometric hydrogen peroxide biosensor based on immobilized Hb in Pluronic P123-nanographene platelets composite. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 84, 427-32	6	39
550	Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array. <i>Materials and Design</i> , 2019 , 177, 107845	8.1	38
549	A pH-sensitive self-healing coating for biodegradable magnesium implants. <i>Acta Biomaterialia</i> , 2019 , 98, 160-173	10.8	38
548	Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. <i>Journal of Alloys and Compounds</i> , 2015 , 645, 137-142	5.7	38
547	A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing. <i>Journal of Materials Science and Technology</i> , 2020 , 57, 1-11	9.1	38
546	Properties of Zr@rC@rC/DLC gradient films on TiNi alloy by the PIIID technique combined with PECVD. Surface and Coatings Technology, 2008, 202, 3011-3016	4.4	38
545	Ce and Er Co-doped TiO for rapid bacteria- killing using visible light. <i>Bioactive Materials</i> , 2020 , 5, 201-20	916.7	37
544	Microstructure and characteristics of the metal-ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2011 , 99, 127-34	3.5	37
543	Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9% NaCl solution. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2009 , 60, 330-335	1.6	37
542	Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrOBiO2IIiO2 soligel coating. <i>Applied Surface Science</i> , 2011 , 257, 5913-5918	6.7	37
541	Single-Atom Catalysis for Efficient Sonodynamic Therapy of Methicillin-Resistant -Infected Osteomyelitis. <i>ACS Nano</i> , 2021 , 15, 10628-10639	16.7	37
540	Endowing polyetheretherketone with synergistic bactericidal effects and improved osteogenic ability. <i>Acta Biomaterialia</i> , 2018 , 79, 216-229	10.8	37
539	Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy. <i>Journal of Materials Science and Technology</i> , 2018 , 34, 1805-1816	9.1	36

Microstructural development inside the stress induced martensite variant in a TiNiNb shape

Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection.

memory alloy. Acta Materialia, 2000, 48, 1409-1425

8.4

34

34

Science Advances, 2020, 6,

522

521

(2018-2020)

520	Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. <i>Corrosion Science</i> , 2020 , 163, 108303	6.8	34
519	Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. <i>Corrosion Science</i> , 2019 , 157, 205-219	6.8	33
518	ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use. <i>Journal of Endodontics</i> , 2015 , 41, 937-42	4.7	33
517	Rapid Sterilization by Photocatalytic Ag3PO4/Fe2O3 Composites Using Visible Light. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2577-2585	8.3	33
516	Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. <i>Acta Biomaterialia</i> , 2016 , 44, 323-31	10.8	33
515	Corrosion and ion release behavior of ultra-fine grained bulk pure copper fabricated by ECAP in Hanks solution as potential biomaterial for contraception. <i>Materials Letters</i> , 2010 , 64, 524-527	3.3	33
514	Investigation of Mg-Zn-Y-Nd alloy for potential application of biodegradable esophageal stent material. <i>Bioactive Materials</i> , 2020 , 5, 1-8	16.7	33
513	In vitro degradation and biocompatibility of Mg-Li-Ca alloysthe influence of Li content. <i>Science China Materials</i> , 2018 , 61, 607-618	7.1	33
512	Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601269	10.1	32
511	Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy. <i>Bioactive Materials</i> , 2017 , 2, 63-70	16.7	32
510	Suppression of phase in Ni38Co12Mn41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties. <i>Intermetallics</i> , 2013 , 36, 81-85	3.5	32
509	Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility. <i>Acta Biomaterialia</i> , 2013 , 9, 9578-87	10.8	32
508	Microstructure and room temperature mechanical properties of NiAl[Ir(Mo)[Hf, Dy) hypoeutectic alloy prepared by injection casting. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 983-990	3.3	32
507	In vitro corrosion of Mgfl.21Lifl.12CaflY alloy. <i>Progress in Natural Science: Materials International</i> , 2014 , 24, 492-499	3.6	32
506	Chemically anchoring of TiO2 coating on OH-terminated Mg3(PO3)2 surface and its influence on the in vitro degradation resistance of Mg@n@a alloy. <i>Applied Surface Science</i> , 2014 , 308, 38-42	6.7	32
505	Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/Etatenin signaling pathway activation. <i>Acta Biomaterialia</i> , 2020 , 101, 152-167	10.8	32
504	Eco-friendly Hybrids of Carbon Quantum Dots Modified MoS2 for Rapid Microbial Inactivation by Strengthened Photocatalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 534-542	8.3	32
503	Mg-Zn-Y-Nd coated with citric acid and dopamine by layer-by-layer self-assembly to improve surface biocompatibility. <i>Science China Technological Sciences</i> , 2018 , 61, 1228-1237	3.5	31

502	Processing and properties of magnesium alloy micro-tubes for biodegradable vascular stents. <i>Materials Science and Engineering C</i> , 2018 , 90, 504-513	8.3	31
501	Uniform and accelerated degradation of pure iron patterned by Pt disc arrays. <i>Scientific Reports</i> , 2016 , 6, 23627	4.9	31
500	Ag2S decorated nanocubes with enhanced near-infrared photothermal and photodynamic properties for rapid sterilization. <i>Colloids and Interface Science Communications</i> , 2019 , 33, 100201	5.4	31
499	A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 118, 77-82	6	31
498	Thermal cycling stability of ultrafine-grained TiNi shape memory alloys processed by equal channel angular pressing. <i>Scripta Materialia</i> , 2012 , 67, 1-4	5.6	31
497	Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application. <i>Acta Biomaterialia</i> , 2012 , 8, 886-96	10.8	31
496	The influence of lactic on the properties of Poly (glycerollebacatellactic acid). <i>Materials Science and Engineering C</i> , 2009 , 29, 178-182	8.3	31
495	A novel amperometric hydrogen peroxide biosensor based on electrospun Hb-collagen composite. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 140-5	6	31
494	Multi-pass spinning of thin-walled tubular part with longitudinal inner ribs. <i>Transactions of Nonferrous Metals Society of China</i> , 2009 , 19, 215-221	3.3	31
493	Pyrite (FeS2) films prepared via solgel hydrothermal method combined with electrophoretic deposition (EPD). <i>Materials Research Bulletin</i> , 2004 , 39, 1861-1868	5.1	31
492	Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 6-18	9.1	31
491	An UV to NIR-driven platform based on red phosphorus/graphene oxide film for rapid microbial inactivation. <i>Chemical Engineering Journal</i> , 2020 , 383, 123088	14.7	31
490	Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys. <i>Journal of Materials Science and Technology</i> , 2021 , 60, 44-55	9.1	31
489	Sr/ZnO doped titania nanotube array: An effective surface system with excellent osteoinductivity and self-antibacterial activity. <i>Materials and Design</i> , 2017 , 130, 403-412	8.1	30
488	The rapid photoresponsive bacteria-killing of Cu-doped MoS. <i>Biomaterials Science</i> , 2020 , 8, 4216-4224	7.4	30
487	Overcoming Multidrug-Resistant MRSA Using Conventional Aminoglycoside Antibiotics. <i>Advanced Science</i> , 2020 , 7, 1902070	13.6	30
486	Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+ETCP)/MgCa composite fabricated by suction casting. <i>Materials Science and Engineering C</i> , 2013 , 33, 4266-73	8.3	30
485	IN VITRO AND IN VIVO BIOCOMPATIBILITY STUDIES OF ZNO NANOPARTICLES. <i>International Journal of Modern Physics B</i> , 2009 , 23, 1566-1571	1.1	30

484	Carbon nanotube-hydroxyapatite-hemoglobin nanocomposites with high bioelectrocatalytic activity. <i>Bioelectrochemistry</i> , 2010 , 78, 124-9	5.6	30
483	The microstructure and shape memory effect of Till6lat.%Nb alloy. <i>Materials Letters</i> , 2008 , 62, 269-272	3.3	30
482	Structural transition and atomic ordering of Ni49.8Mn28.5Ga21.7 ferromagnetic shape memory alloy powders prepared by ball milling. <i>Materials Letters</i> , 2008 , 62, 2851-2854	3.3	30
481	Effect of Fe addition on transformation temperatures and hardness of NiMnGa magnetic shape memory alloys. <i>Journal of Materials Science</i> , 2005 , 40, 219-221	4.3	30
480	Surface modification of the biodegradable cardiovascular stent material MgZnYNd alloy via conjugating REDV peptide for better endothelialization. <i>Journal of Materials Research</i> , 2018 , 33, 4123-4	1133	30
479	An Engineered Pseudo-Macrophage for Rapid Treatment of Bacteria-Infected Osteomyelitis via Microwave-Excited Anti-Infection and Immunoregulation. <i>Advanced Materials</i> , 2021 , 33, e2102926	24	30
478	Metal Drganic Frameworks Incorporated Polycaprolactone Film for Enhanced Corrosion Resistance and Biocompatibility of Mg Alloy. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18114-18124	8.3	29
477	Comparative Studies on Degradation Behavior of Pure Zinc in Various Simulated Body Fluids. <i>Jom</i> , 2019 , 71, 1414-1425	2.1	29
476	Novel pH-responsive tobramycin-embedded micelles in nanostructured multilayer-coatings of chitosan/heparin with efficient and sustained antibacterial properties. <i>Materials Science and Engineering C</i> , 2018 , 90, 693-705	8.3	29
475	In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 142, 20-29	6	29
474	Microstructure and martensitic transformation of an ultrafine-grained TiNiNb shape memory alloy processed by equal channel angular pressing. <i>Intermetallics</i> , 2014 , 49, 81-86	3.5	29
473	Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2013 , 101, 237-46	3.5	29
472	Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2015 , 103, 764-76	3.5	29
471	Composite coating prepared by micro-arc oxidation followed by solgel process and in vitro degradation properties. <i>Applied Surface Science</i> , 2012 , 258, 2939-2943	6.7	29
470	Development of CaZn based glassy alloys as potential biodegradable bone graft substitute. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 3830-3840	3.9	29
469	Correlation between corrosion performance and surface wettability in ZrTiCuNiBe bulk metallic glasses. <i>Applied Physics Letters</i> , 2010 , 96, 251909	3.4	29
468	In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. <i>Biomedical Materials (Bristol)</i> , 2011 , 6, 025001	3.5	29
467	Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface. <i>Applied Surface Science</i> , 2011 , 257, 9086-9093	6.7	29

466	Micro-/Nanotopography on Bioresorbable Zinc Dictates Cytocompatibility, Bone Cell Differentiation, and Macrophage Polarization. <i>Nano Letters</i> , 2020 , 20, 4594-4602	11.5	28
465	and degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys. <i>Bioactive Materials</i> , 2020 , 5, 275-285	16.7	28
464	Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. <i>Materials Science and Engineering C</i> , 2020 , 110, 110738	8.3	28
463	Microstructure and characteristics of interpenetrating ETCP/MgInMn composite fabricated by suction casting. <i>Materials & Design</i> , 2014 , 54, 995-1001		28
462	Plasma enhanced chemical vapor deposited silicon coatings on Mg alloy for biomedical application. <i>Surface and Coatings Technology</i> , 2013 , 228, S262-S265	4.4	28
461	Tantalum coated NiTi alloy by PIIID for biomedical application. <i>Surface and Coatings Technology</i> , 2013 , 228, S2-S6	4.4	28
460	Corrosion of magnesium and magnesiumBalcium alloy in biologically-simulated environment. <i>Progress in Natural Science: Materials International</i> , 2014 , 24, 539-546	3.6	28
459	ProFile Vortex instruments after clinical use: a metallurgical properties study. <i>Journal of Endodontics</i> , 2012 , 38, 1613-7	4.7	28
458	Corrosion behavior of Ti-5Ag alloy with and without thermal oxidation in artificial saliva solution. <i>Dental Materials</i> , 2011 , 27, 214-20	5.7	28
457	HREM Study on the Intervariant Structure of Ti-Ni-Hf B19? Martensite. <i>Scripta Materialia</i> , 1998 , 38, 1249	9- <u>4</u> . @ 53	28
456	The corrosion behavior and hemocompatibility of TiNi alloys coated with DLC by plasma based ion implantation. <i>Surface and Coatings Technology</i> , 2006 , 200, 4543-4548	4.4	28
455	pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. <i>Acta Biomaterialia</i> , 2020 , 115, 220-234	10.8	28
454	Formation Mechanism, Corrosion Behavior, and Cytocompatibility of Microarc Oxidation Coating on Absorbable High-Purity Zinc. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 487-497	5.5	28
453	Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. <i>Materials Science and Engineering C</i> , 2017 , 76, 50-58	8.3	27
452	Characterization and cytocompatibility of polydopamine on MAO-HA coating supported on Mg-Zn-Ca alloy. <i>Surface and Interface Analysis</i> , 2017 , 49, 1115-1123	1.5	27
451	Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, microstructure and mechanical properties. <i>Materials and Design</i> , 2019 , 181, 107937	8.1	27
45 ¹		9.1	27

448	In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application. <i>Science China Materials</i> , 2019 , 62, 256-272	7.1	27
447	Photoelectric-Responsive Extracellular Matrix for Bone Engineering. <i>ACS Nano</i> , 2019 , 13, 13581-13594	16.7	27
446	Surface Characterization and Cell Response of Binary Ti-Ag Alloys with CP Ti as Material Control. Journal of Materials Science and Technology, 2012, 28, 779-784	9.1	27
445	Nanocomposites of poly(l-lactide) and surface modified magnesia nanoparticles: Fabrication, mechanical property and biodegradability. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 111-116	3.9	27
444	In Vitro Biocompatibility Study of Nano TiO2 Materials. Advanced Materials Research, 2008, 47-50, 1438-	-1 /1 1	27
443	Effect of low dc magnetic field on the premartensitic phase transition temperature of ferromagnetic Ni2MnGa single crystals. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 2607-2613	1.8	27
442	Na+ inserted metal-organic framework for rapid therapy of bacteria-infected osteomyelitis through microwave strengthened Fenton reaction and thermal effects. <i>Nano Today</i> , 2021 , 37, 101090	17.9	27
441	Near-infrared light controlled fast self-healing protective coating on magnesium alloy. <i>Corrosion Science</i> , 2020 , 163, 108257	6.8	27
440	Recent Progress in Photocatalytic Antibacterial ACS Applied Bio Materials, 2021, 4, 3909-3936	4.1	27
439	Enzyme and PH responsive 5-flurouracil (5-FU) loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. <i>European Polymer Journal</i> , 2019 , 118, 64-70	5.2	26
438	Corrosion resistance and drug release profile of gentamicin-loaded polyelectrolyte multilayers on magnesium alloys: Effects of heat treatment. <i>Journal of Colloid and Interface Science</i> , 2019 , 547, 309-31	7 9·3	26
437	In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. <i>Acta Biomaterialia</i> , 2019 , 98, 50-66	10.8	26
436	Effect of extrusion process on the mechanical and in vitro degradation performance of a biomedical Mg-Zn-Y-Nd alloy. <i>Bioactive Materials</i> , 2020 , 5, 219-227	16.7	26
435	Integrated Computational Materials Engineering (ICME) Approach to Design of Novel Microstructures for Ti-Alloys. <i>Jom</i> , 2014 , 66, 1287-1298	2.1	26
434	Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. <i>Materials Science and Engineering C</i> , 2015 , 48, 679-87	8.3	26
433	Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg-Zn-Mn composite fabricated by suction casting. <i>Materials Science and Engineering C</i> , 2013 , 33, 618-25	8.3	26
432	Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys. <i>Journal of Materials Engineering and Performance</i> , 2011 , 20, 762-766	1.6	26
431	High-resolution electron microscopy study on the substructure of Ti⊠i⊞f B19? Martensite. Materials Letters, 1998 , 36, 142-147	3.3	26

Development and properties of Ti-In binary alloys as dental biomaterials. Materials Science and

8.3

24

Engineering C, **2013**, 33, 1601-6

413

(2021-2012)

412	Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis. <i>Transactions of Nonferrous Metals Society of China</i> , 2012 , 22, 489-495	3.3	24	
411	Time effect of martensitic transformation in Ni43Co7Mn41Sn9. <i>Intermetallics</i> , 2010 , 18, 188-192	3.5	24	
410	Bending properties of epoxy resin matrix composites filled with NiMnta ferromagnetic shape memory alloy powders. <i>Materials Letters</i> , 2009 , 63, 1729-1732	3.3	24	
409	Deposition of TiN coatings on shape memory NiTi alloy by plasma immersion ion implantation and deposition. <i>Thin Solid Films</i> , 2006 , 515, 1358-1363	2.2	24	
408	Surface characterization and immersion tests of TiNi alloy coated with Ta. <i>Surface and Coatings Technology</i> , 2005 , 190, 428-433	4.4	24	
407	Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous TiBCu alloys. <i>Journal of Alloys and Compounds</i> , 2020 , 812, 152142	5.7	24	
406	Zn-assisted photothermal therapy for rapid bacteria-killing using biodegradable humic acid encapsulated MOFs. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 188, 110781	6	24	
405	Study on the in vitro degradation behavior of pure Mg and WE43 in human bile for 60 days for future usage in biliary. <i>Materials Letters</i> , 2016 , 179, 100-103	3.3	24	
404	Magnesium-calcium/hydroxyapatite (Mg-Ca/HA) composites with enhanced bone differentiation properties for orthopedic applications. <i>Materials Letters</i> , 2016 , 172, 193-197	3.3	24	
403	Constructing Multilayer Silk Protein/Nanosilver Biofunctionalized Hierarchically Structured 3D Printed Ti6Al4 V Scaffold for Repair of Infective Bone Defects. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 244-261	5.5	24	
402	Effects of annealing treatment on microstructure and tensile behavior of the Mg-Zn-Y-Nd alloy. Journal of Magnesium and Alloys, 2020 , 8, 601-613	8.8	23	
401	Influence of Zn Content on Microstructure and Tensile Properties of Mg@n@fild Alloy. <i>Acta Metallurgica Sinica (English Letters)</i> , 2018 , 31, 351-361	2.5	23	
400	Microstructural and property evolution of Ti6Al4V powders with the number of usage in additive manufacturing by electron beam melting. <i>Materials Letters</i> , 2018 , 221, 111-114	3.3	23	
399	Effect of sterilization process on surface characteristics and biocompatibility of pure Mg and MgCa alloys. <i>Materials Science and Engineering C</i> , 2013 , 33, 4144-54	8.3	23	
398	Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications. <i>Acta Biomaterialia</i> , 2015 , 15, 254-65	10.8	23	
397	Effects of ambient pressure on silicon nanowire growth. <i>Chemical Physics Letters</i> , 2001 , 334, 229-232	2.5	23	
396	Antibacterial Hybrid Hydrogels. <i>Macromolecular Bioscience</i> , 2021 , 21, e2000252	5.5	23	
395	Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate bone regeneration. <i>Bioactive Materials</i> , 2021 , 6, 2315-2330	16.7	23	

394	Hierarchical Micropore/Nanorod Apatite Hybrids In-Situ Grown from 3-D Printed Macroporous Ti6Al4V Implants with Improved Bioactivity and Osseointegration. <i>Journal of Materials Science and Technology</i> , 2017 , 33, 179-186	9.1	22
393	Microstructure, corrosion resistance and formation mechanism of alumina micro-arc oxidation coatings on sintered NdFeB permanent magnets. <i>Surface and Coatings Technology</i> , 2017 , 309, 621-627	4.4	22
392	Diameter-dependent in vitro performance of biodegradable pure zinc wires for suture application. Journal of Materials Science and Technology, 2019 , 35, 1662-1670	9.1	22
391	Controllable biodegradation and enhanced osseointegration of ZrO-nanofilm coated Zn-Li alloy: In vitro and in vivo studies. <i>Acta Biomaterialia</i> , 2020 , 105, 290-303	10.8	22
390	A near infrared-activated photocatalyst based on elemental phosphorus by chemical vapor deposition. <i>Applied Catalysis B: Environmental</i> , 2019 , 258, 117980	21.8	22
389	Ti-Ga binary alloys developed as potential dental materials. <i>Materials Science and Engineering C</i> , 2014 , 34, 474-83	8.3	22
388	A mathematical model for describing the mechanical behaviour of root canal instruments. <i>International Endodontic Journal</i> , 2011 , 44, 72-6	5.4	22
387	High Magnesium Corrosion Rate has an Effect on Osteoclast and Mesenchymal Stem Cell Role During Bone Remodelling. <i>Scientific Reports</i> , 2018 , 8, 10003	4.9	22
386	TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. <i>Nature Communications</i> , 2021 , 12, 2885	17.4	22
385	Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds. <i>Chemical Engineering Journal</i> , 2021 , 414, 128805	14.7	22
384	Effects of Sr addition on microstructure, mechanical and corrosion properties of biodegradable MgZnta alloy. <i>Journal of Alloys and Compounds</i> , 2020 , 838, 155611	5.7	21
383	Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: Microstructure, mechanical properties, corrosion behavior and antibacterial activities. <i>Bioactive Materials</i> , 2018 , 3, 225-235	16.7	21
382	Study on bio-corrosion and cytotoxicity of a sr-based bulk metallic glass as potential biodegradable metal. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2012 , 100, 368-77	3.5	21
381	In vitro corrosion behavior and cellular response of thermally oxidized ZrBSn alloy. <i>Applied Surface Science</i> , 2013 , 265, 878-888	6.7	21
380	A Study of ZrN/Zr Coatings Deposited on NiTi Alloy by PIIID Technique. <i>IEEE Transactions on Plasma Science</i> , 2006 , 34, 1105-1108	1.3	21
379	Magnetic-field-induced strains and magnetic properties of Heusler alloy Ni52Mn23Ga25. <i>Journal of Applied Physics</i> , 2000 , 87, 6292-6294	2.5	21
378	Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility. <i>Scientific Reports</i> , 2016 , 6, 24414	4.9	21
377	A surface-engineered multifunctional TiO based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. <i>Acta Biomaterialia</i> , 2019 , 99, 495-513	10.8	20

(2005-2019)

376	The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy. <i>Applied Surface Science</i> , 2019 , 484, 511-523	6.7	20
375	Cell-free 3D wet-electrospun PCL/silk fibroin/Sr scaffold promotes successful total meniscus regeneration in a rabbit model. <i>Acta Biomaterialia</i> , 2020 , 113, 196-209	10.8	20
374	Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. <i>Materials Science & Engineering A:</i> Structural Materials: Properties, Microstructure and Processing, 2020 , 777, 139082	5.3	20
373	Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti6Al4V for improved hemocompatibility, osteogenic and anti-infection potencies. <i>Science China Materials</i> , 2018 , 61, 579-592	7.1	20
372	One-step electrodeposition of self-assembled colloidal particles: a novel strategy for biomedical coating. <i>Langmuir</i> , 2014 , 30, 11002-10	4	20
371	In vitro corrosion and biocompatibility of phosphating modified WE43 magnesium alloy. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 996-1001	3.3	20
370	Controlled release and corrosion protection by self-assembled colloidal particles electrodeposited onto magnesium alloys. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1667-1676	7.3	20
369	In vivo and in vitro evaluation of effects of Mg-6Zn alloy on apoptosis of common bile duct epithelial cell. <i>BioMetals</i> , 2014 , 27, 1217-30	3.4	20
368	Research activities of biomedical magnesium alloys in China. <i>Jom</i> , 2011 , 63, 105-108	2.1	20
367	Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material. <i>Biomedical Materials (Bristol)</i> , 2010 , 5, 35013	3.5	20
366	Cyclic ageing of TiB0.8 at.% Ni alloy. <i>Intermetallics</i> , 2008 , 16, 394-398	3.5	20
365	The characterization of fluorocarbon films on NiTi alloy by magnetron sputtering. <i>Applied Surface Science</i> , 2008 , 255, 432-434	6.7	20
364	Improved cytocompatibility of Mg-1Ca alloy modified by Zn ion implantation and deposition. <i>Materials Letters</i> , 2017 , 205, 87-89	3.3	19
363	Construction of perfluorohexane/IR780@liposome coating on Ti for rapid bacteria killing under permeable near infrared light. <i>Biomaterials Science</i> , 2018 , 6, 2460-2471	7.4	19
362	Transformation hysteresis and shape memory effect of an ultrafine-grained TiNiNb shape memory alloy. <i>Intermetallics</i> , 2014 , 54, 133-135	3.5	19
361	Corrosion behavior of TiO2 films on MgIn alloy in simulated body fluid. <i>Applied Surface Science</i> , 2011 , 257, 4464-4467	6.7	19
360	Two-way shape memory effect induced by martensite deformation and stabilization of martensite in Ti36Ni49Hf15 high temperature shape memory alloy. <i>Materials Letters</i> , 2003 , 57, 4206-4211	3.3	19
359	Effect of Pt film thickness on PtSi formation and film surface morphology. <i>Surface and Coatings Technology</i> , 2005 , 198, 329-334	4.4	19

358	Carbon monoxide-assisted growth of carbon nanotubes. <i>Chemical Physics Letters</i> , 2001 , 342, 259-264	2.5	19
357	Triple-Bioinspired Burying/Crosslinking Interfacial Coassembly Strategy for Layer-by-Layer Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications. <i>ACS Applied Materials & Discourse (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications (Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robust Function of Robust Function of Robust Function (Construction of Robust Function of Robus</i>	9.5	19
356	Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light. <i>Journal of Materials Science and Technology</i> , 2021 , 67, 70-79	9.1	19
355	Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank solution. <i>Corrosion Science</i> , 2019 , 161, 108185	6.8	18
354	Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications. <i>Frontiers of Materials Science</i> , 2016 , 10, 270-280	2.5	18
353	Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys. <i>Intermetallics</i> , 2016 , 72, 30-35	3.5	18
352	Superelasticity and its stability of an ultrafine-grained Ti49.2Ni50.8 shape memory alloy processed by equal channel angular pressing. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 587, 61-64	5.3	18
351	Magnetic field induced strain and damping behavior of NiMnta particles/epoxy resin composite. <i>Journal of Alloys and Compounds</i> , 2014 , 604, 137-141	5.7	18
350	A comprehensive biological evaluation of ceramic nanoparticles as wear debris. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2011 , 7, 975-82	6	18
349	Surface modification of Ca60Mg15Zn25 bulk metallic glass for slowing down its biodegradation rate in water solution. <i>Materials Letters</i> , 2010 , 64, 1462-1464	3.3	18
348	The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use. <i>Dental Materials</i> , 2008 , 24, 1207-11	5.7	18
347	Modification of biomedical NiTi shape memory alloy by TiC/Ti films using PIIID. <i>Surface and Coatings Technology</i> , 2007 , 201, 6857-6860	4.4	18
346	The structure and mobility of the intervariant boundaries in 18R martensite in a Cuanal alloy. <i>Acta Materialia</i> , 1999 , 47, 2125-2141	8.4	18
345	Photoelectrons Mediating Angiogenesis and Immunotherapy through Heterojunction Film for Noninvasive Disinfection. <i>Advanced Science</i> , 2020 , 7, 2000023	13.6	18
344	In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis. <i>Acta Biomaterialia</i> , 2020 , 116, 223-245	10.8	18
343	The microstructure and corrosion resistance of biological MgInII a alloy processed by high-pressure torsion and subsequently annealing. <i>Journal of Materials Research</i> , 2017 , 32, 1061-1072	2.5	17
342	Rapamycin-loaded nanoporous #eO as an endothelial favorable and thromboresistant coating for biodegradable drug-eluting Fe stent applications. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 1182-1194	7-3	17
341	Creep properties of biodegradable Zn-0.1Li alloy at human body temperature: implications for its durability as stents. <i>Materials Research Letters</i> , 2019 , 7, 347-353	7.4	17

(2010-2014)

340	TiNi shape memory alloy coated with tungsten: a novel approach for biomedical applications. Journal of Materials Science: Materials in Medicine, 2014 , 25, 1249-55	4.5	17	
339	Cell response of nanographene platelets to human osteoblast-like MG63 cells. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 732-42	5.4	17	
338	Development of Ti-Ag-Fe ternary titanium alloy for dental application. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2012 , 100, 185-96	3.5	17	
337	Surface characteristics and electrochemical corrosion behavior of NiTi alloy coated with IrO2. <i>Materials Science and Engineering C</i> , 2013 , 33, 15-20	8.3	17	
336	In Vitro Structural Changes of Nano-Bacterial Cellulose Immersed in Phosphate Buffer Solution. <i>Journal of Biomimetics, Biomaterials, and Tissue Engineering</i> , 2011 , 10, 55-66		17	
335	A study of TaxC1\(\mathbb{I}\) coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering. <i>Applied Surface Science</i> , 2010 , 257, 696-703	6.7	17	
334	A simple route to annihilate defects in silicon nanowires. <i>Chemical Physics Letters</i> , 2000 , 328, 346-349	2.5	17	
333	Effects of flow velocity and different corrosion media on the in vitro bio-corrosion behaviors of AZ31 magnesium alloy. <i>Materials Chemistry and Physics</i> , 2018 , 217, 300-307	4.4	17	
332	Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study. <i>Applied Surface Science</i> , 2017 , 409, 149-155	6.7	16	
331	Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 1393-1402	9.1	16	
330	Effect of Sn addition on the corrosion behavior of Ti-Ta alloy. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2012 , 63, 259-263	1.6	16	
329	Properties of Porous TiNbZr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing. <i>Journal of Materials Engineering and Performance</i> , 2011 , 20, 783-786	1.6	16	
328	The orientation dependence of transformation strain of NiMnta polycrystalline alloy and its composite with epoxy resin. <i>Journal of Alloys and Compounds</i> , 2010 , 505, 680-684	5.7	16	
327	In Vivo Biocompatibility Studies of Nano TiO2 Materials. <i>Advanced Materials Research</i> , 2009 , 79-82, 389-	-393	16	
326	Calcification capacity of porous pHEMA-TiOltomposite hydrogels. <i>Journal of Materials Science: Materials in Medicine</i> , 2009 , 20, 2215-22	4.5	16	
325	Effect of short-time direct current heating on phase transformation and superelasticity of TiB0.8at.%Ni alloy. <i>Journal of Alloys and Compounds</i> , 2009 , 477, 764-767	5.7	16	
324	Electrochemistry of bilirubin oxidase at carbon nanotubes. <i>Journal of Solid State Electrochemistry</i> , 2010 , 14, 249-254	2.6	16	
323	Preparation and characterization of TaCxN1⊠ coatings on biomedical 316L stainless steel. <i>Surface and Coatings Technology</i> , 2010 , 204, 2519-2526	4.4	16	

322	Shape Memory Effect and Superelastic Property of a Novel Ti-3Zr-2Sn-3Mo-15Nb Alloy. <i>Rare Metal Materials and Engineering</i> , 2008 , 37, 1-5		16
321	Adsorption and electrochemistry of hemoglobin on Chi-carbon nanotubes composite film. <i>Applied Surface Science</i> , 2008 , 255, 571-573	6.7	16
320	Effect of internal stress and bias field on the transformation strain of the Heusler alloy Ni52Mn24.4Ga23.6. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 6287-6293	1.8	16
319	Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. <i>Rare Metals</i> , 2019 , 38, 588-600	5.5	16
318	Research status of biodegradable metals designed for oral and maxillofacial applications: A review. <i>Bioactive Materials</i> , 2021 , 6, 4186-4208	16.7	16
317	Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 133, 99-107	6	15
316	Effect of enhanced interfacial reaction on the microstructure, phase transformation and mechanical property of NiMnta particles/Mg composites. <i>Materials and Design</i> , 2015 , 82, 77-83	8.1	15
315	Corrosion fatigue of the extruded MgZnYNd alloy in simulated body fluid. <i>Journal of Magnesium</i> and Alloys, 2020 , 8, 231-240	8.8	15
314	Investigation on the in vitro cytocompatibility of Mg-Zn-Y-Nd-Zr alloys as degradable orthopaedic implant materials. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 29, 44	4.5	15
313	In vitro and in vivo studies on as-extruded Mg- 5.25wt.%Zn-0.6wt.%Ca alloy as biodegradable metal. <i>Science China Materials</i> , 2018 , 61, 619-628	7.1	15
312	Microstructure, phase transformation and mechanical property of NiMnta particles/Mg composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 615, 273-277	5.3	15
311	Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. <i>Rare Metals</i> , 2014 , 33, 511-515	5.5	15
310	Bulk metallic glasses based on ytterbium and calcium. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 1232	-132334	15
309	Microstructure, martensitic transformation and superelasticity of Ti49.6Ni45.1Cu5Cr0.3 shape memory alloy. <i>Materials Letters</i> , 2011 , 65, 74-77	3.3	15
308	Ti-TiC-TiC/DLC gradient nano-composite film on a biomedical NiTi alloy. <i>Biomedical Materials</i> (<i>Bristol</i>), 2008 , 3, 044103	3.5	15
307	Electrochemical corrosion behaviour of Ti44Ni47Nb9 alloy in simulated body fluids. <i>Materials Science & Communication of Communication of Ti44Ni47Nb9 alloy in simulated body fluids. Materials Science & Communication of Ti44Ni47Nb9 alloy in simulated body fluids. Materials 438-440, 504-508</i>	5.3	15
306	Substructure and boundary structure of deformed 18R martensite in a CuZnAl alloy. <i>Acta Materialia</i> , 1999 , 47, 3497-3506	8.4	15
305	Photo-Sono Interfacial Engineering Exciting the Intrinsic Property of Herbal Nanomedicine for Rapid Broad-Spectrum Bacteria Killing. <i>ACS Nano</i> , 2021 ,	16.7	15

304	Improved osseointegration with rhBMP-2 intraoperatively loaded in a specifically designed 3D-printed porous Ti6Al4V vertebral implant. <i>Biomaterials Science</i> , 2020 , 8, 1279-1289	7.4	15	
303	Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. <i>Advanced Science</i> , 2021 , 8, e2100446	13.6	15	
302	Construction of Self-defensive Antibacterial and Osteogenic AgNPs/Gentamicin Coatings with Chitosan as Nanovalves for Controlled release. <i>Scientific Reports</i> , 2018 , 8, 13432	4.9	15	
301	Multiple-stage transformation behavior of Ti49.2Ni50.8 alloy with different initial microstructure processed by equal channel angular pressing. <i>Intermetallics</i> , 2017 , 85, 163-169	3.5	14	
300	Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 2156-2162	9.1	14	
299	Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent. <i>Journal of Materials Science and Technology</i> , 2020 , 46, 114-126	9.1	14	
298	In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity. <i>Materials Science and Engineering C</i> , 2016 , 60, 554-559	8.3	14	
297	Biocorrosion of coated Mg᠒n᠒a alloy under constant compressive stress close to that of human tibia. <i>Materials Letters</i> , 2012 , 70, 174-176	3.3	14	
296	Fabrication and Characterization of Porous Sintered TiAg Compacts for Biomedical Application Purpose. <i>Journal of Materials Science and Technology</i> , 2013 , 29, 330-338	9.1	14	
295	Phase Transformation and Magnetic Property of Ni-Mn-Ga Powders Prepared by Dry Ball Milling. Journal of Materials Engineering and Performance, 2012, 21, 2530-2534	1.6	14	
294	Surface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas-flow physiological saline. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2012 , 100, 1404-10	3.5	14	
293	Effect of N2/Ar gas flow ratio on the deposition of TiN/Ti coatings on NiTi shape memory alloy by PIIID. <i>Materials Letters</i> , 2006 , 60, 2243-2247	3.3	14	
292	HREM studies of twin boundary structure in deformed martensite in the cold-rolled TiNi shape memory alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 297, 185-196	5.3	14	
291	A review on current research status of the surface modification of Zn-based biodegradable metals. <i>Bioactive Materials</i> , 2022 , 7, 192-216	16.7	14	
290	A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles. <i>Materials Letters</i> , 2015 , 157, 143-146	3.3	13	
289	Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial. <i>Journal of Materials Science and Technology</i> , 2016 , 32, 89-96	9.1	13	
288	Microstructures, mechanical behavior, cellular response, and hemocompatibility of bulk ultrafine-grained pure tantalum. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2014 , 102, 221-30	3.5	13	
287	Ti-Ge binary alloy system developed as potential dental materials. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2012 , 100, 2239-50	3.5	13	

286	Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 2586-601	5.4	13
285	Effect of pre-strain on martensitic transformation of Ni43Mn43Co7Sn7 high- temperature shape memory alloy. <i>Materials Letters</i> , 2010 , 64, 1879-1882	3.3	13
284	Formation of TiN films on biomedical NiTi shape memory alloy by PIIID. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2006 , 434, 99-104	5.3	13
283	Sulfur Contents in Sulfonated Hyaluronic Acid Direct the Cardiovascular Cells Fate. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 46827-46836	9.5	13
282	In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg-Ca alloy and Mg-Sr alloy processed by high-pressure torsion. <i>Biomaterials Science</i> , 2020 , 8, 5071-5087	7.4	13
281	Effect of annealing temperature on martensitic transformation of Ti49.2Ni50.8 alloy processed by equal channel angular pressing. <i>Transactions of Nonferrous Metals Society of China</i> , 2016 , 26, 448-455	3.3	13
2 80	Microstructure and martensitic transformation of NiTiHfSc high temperature shape memory alloys. Journal of Alloys and Compounds, 2019 , 779, 212-218	5.7	13
279	Photo-controlled degradation of PLGA/TiC hybrid coating on Mg-Sr alloy using near infrared light. <i>Bioactive Materials</i> , 2021 , 6, 568-578	16.7	13
278	Unraveling the osteogenesis of magnesium by the activity of osteoblasts in vitro. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 6615-6621	7.3	13
277	Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. <i>Biomaterials</i> , 2021 , 276, 121038	15.6	13
276	Accelerating Corrosion of Pure Magnesium Co-implanted with Titanium in Vivo. <i>Scientific Reports</i> , 2017 , 7, 41924	4.9	12
275	Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 426, 361-368	2.8	12
274	In vitro and in vivo assessment of the biocompatibility of an paclitaxel-eluting poly-l-lactide-coated Mg-Zn-Y-Nd alloy stent in the intestine. <i>Materials Science and Engineering C</i> , 2019 , 105, 110087	8.3	12
273	Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model. <i>Biomaterials Science</i> , 2020 , 8, 3106-3115	7.4	12
272	Magnetic-field-induced reverse transformation in a NiCoMnSn high temperature ferromagnetic shape memory alloy. <i>Journal of Magnetism and Magnetic Materials</i> , 2013 , 347, 72-74	2.8	12
271	Effect of Aging Treatment on Superelasticity of a Ti48.8Ni50.8V0.4 Alloy. <i>Journal of Materials Engineering and Performance</i> , 2012 , 21, 2566-2571	1.6	12
270	A novel copper/polydimethiylsiloxane nanocomposite for copper-containing intrauterine contraceptive devices. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2013 , 101, 1428-36	3.5	12
269	Corrosion behavior of newly developed TiAgHe dental alloys in neutral saline solution. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2011 , 62, 766-770	1.6	12

(2021-2011)

268	Assessing the shear band velocity in metallic glasses using a coupled thermo-mechanical model. <i>Philosophical Magazine Letters</i> , 2011 , 91, 705-712	1	12
267	The characterization of mechanical and surface properties of poly (glycerol\(\mathbb{B}\)ebacate\(\mathbb{L}\)ectic acid) during degradation in phosphate buffered saline. <i>Applied Surface Science</i> , 2008 , 255, 350-352	6.7	12
266	Conjugating heparin, Arg-Glu-Asp-Val peptide, and anti-CD34 to the silanic Mg-Zn-Y-Nd alloy for better endothelialization. <i>Journal of Biomaterials Applications</i> , 2020 , 35, 158-168	2.9	12
265	"Imitative" click chemistry to form a sticking xerogel for the portable therapy of bacteria-infected wounds. <i>Biomaterials Science</i> , 2019 , 7, 5383-5387	7.4	12
264	Zn0.8Li0.1Sr-a biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures: In vitro and in vivo studies. <i>Biomaterials</i> , 2021 , 275, 120905	15.6	12
263	3D-printed cell-free PCL-MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration. <i>Bioactive Materials</i> , 2021 , 6, 3620-3633	16.7	12
262	Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. <i>Bioactive Materials</i> , 2021 , 6, 4607-4624	16.7	12
261	Electrochemical polymerization of dopamine with/without subsequent PLLA coating on Mg-Zn-Y-Nd alloy. <i>Materials Letters</i> , 2019 , 252, 202-206	3.3	11
260	In vitro degradation and biocompatibility evaluation of typical biodegradable metals (Mg/Zn/Fe) for the application of tracheobronchial stenosis. <i>Bioactive Materials</i> , 2019 , 4, 114-119	16.7	11
259	High damping capacity in a wide temperature range of a compositionally graded TiNi alloy prepared by electroplating and diffusion annealing. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2015 , 623, 1-3	5.3	11
258	Magnetic resonance (MR) safety and compatibility of a novel iron bioresorbable scaffold. <i>Bioactive Materials</i> , 2020 , 5, 260-274	16.7	11
257	Electrochemistry properties of multilayer TiN/Ti coatings on NiTi alloy for cardiac occluder application. <i>Surface and Coatings Technology</i> , 2013 , 228, S257-S261	4.4	11
256	Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy. <i>Materials Letters</i> , 2011 , 65, 1073-1075	3.3	11
255	Preparation of poly(l-lactide) and its application in bioelectrochemistry. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 621, 69-74	4.1	11
254	Noble metal-based nanomaterials as antibacterial agents. <i>Journal of Alloys and Compounds</i> , 2022 , 904, 164091	5.7	11
253	Self-activating anti-infection implant. <i>Nature Communications</i> , 2021 , 12, 6907	17.4	11
252	Corrosion inhibition of Schiff bases for Mg-Zn-Y-Nd alloy in normal saline: Experimental and theoretical investigations. <i>Corrosion Science</i> , 2021 , 184, 109268	6.8	11
251	Enhanced Near-Infrared Photocatalytic Eradication of MRSA Biofilms and Osseointegration Using Oxide Perovskite-Based P-N Heterojunction. <i>Advanced Science</i> , 2021 , 8, e2002211	13.6	11

250	Nanoporous Nickel-Molybdenum Oxide with an Oxygen Vacancy for Electrocatalytic Nitrogen Fixation under Ambient Conditions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 30722-30730	9.5	11
249	Screening on binary Ti alloy with excellent mechanical property and castability for dental prosthesis application. <i>Scientific Reports</i> , 2016 , 6, 37428	4.9	11
248	In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis. <i>Acta Biomaterialia</i> , 2021 , 121, 713-723	10.8	11
247	The enhanced near-infrared photocatalytic and photothermal effects of MXene-based heterojunction for rapid bacteria-killing. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120500	21.8	11
246	In vivo response of AZ31 alloy as biliary stents: a 6 months evaluation in rabbits. <i>Scientific Reports</i> , 2017 , 7, 40184	4.9	10
245	Preparation and bioactive surface modification of the microwave sintered porous Ti-15Mo alloys for biomedical application. <i>Science China Materials</i> , 2018 , 61, 545-556	7:1	10
244	Biocompatibility of nano-hydroxyapatite/Mg-Zn-Ca alloy composite scaffolds to human umbilical cord mesenchymal stem cells from Wharton's jelly in vitro. <i>Science China Life Sciences</i> , 2014 , 57, 181-7	8.5	10
243	Electroless iron plating on pure magnesium for biomedical applications. <i>Materials Letters</i> , 2014 , 130, 154-156	3.3	10
242	Shape and site dependent in vivo degradation of Mg-Zn pins in rabbit femoral condyle. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 2959-70	6.3	10
241	Martensitic Transformation and Shape Memory Effect of NiCoMnSn High Temperature Shape Memory Alloy. <i>Journal of Materials Engineering and Performance</i> , 2012 , 21, 2509-2514	1.6	10
240	TRANSFORMATION BEHAVIOR AND SHAPE MEMORY EFFECT OF A CoAl ALLOY. <i>International Journal of Modern Physics B</i> , 2009 , 23, 1931-1936	1.1	10
239	High resolution electron microscopy studies on the interface structure of deformed stress induced martensite variants in a TiNiNb shape memory alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 273-275, 271-274	5.3	10
238	A tailored positively-charged hydrophobic surface reduces the risk of implant associated infections. <i>Acta Biomaterialia</i> , 2020 , 114, 421-430	10.8	10
237	Tannic acid/Sr-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritis. <i>Acta Biomaterialia</i> , 2021 , 126, 119-131	10.8	10
236	PDLLA-Zn-nitrided Fe bioresorbable scaffold with 53-fh-thick metallic struts and tunable multistage biodegradation function. <i>Science Advances</i> , 2021 , 7,	14.3	10
235	A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate osseointegration. <i>Chemical Engineering Journal</i> , 2021 , 403, 126323	14.7	10
234	Stepwise 3D-spatio-temporal magnesium cationic niche: Nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification. <i>Bioactive Materials</i> , 2021 , 6, 503-519	16.7	10
233	Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: and studies. <i>Bioactive Materials</i> , 2021 , 6, 3999-4013	16.7	10

232	Chemically robust carbon nanotube IPTFE superhydrophobic thin films with enhanced ability of wear resistance. <i>Progress in Natural Science: Materials International</i> , 2017 , 27, 396-399	3.6	9
231	Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation. <i>Materials Letters</i> , 2017 , 202, 9-12	3.3	9
230	Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function. <i>Materials Science and Engineering C</i> , 2017 , 77, 352-359	8.3	9
229	Microstructure, phase transformation and mechanical property of Nb-doped NiMnta alloys. <i>Intermetallics</i> , 2015 , 64, 37-43	3.5	9
228	Facile immobilization of heparin on bioabsorbable iron via mussel adhesive protein (MAPs). <i>Progress in Natural Science: Materials International</i> , 2014 , 24, 458-465	3.6	9
227	In vitro bioactivity and biocompatibility evaluation of bulk nanostructured titanium in osteoblast-like cells by quantitative proteomic analysis. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 1926-	1 93 8	9
226	Fabrication and characterization of elastomeric polyester/carbon nanotubes nanocomposites for biomedical application. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3126-33	1.3	9
225	Cell responses and hemocompatibility of g-HA/PLA composites. <i>Science China Life Sciences</i> , 2011 , 54, 366-71	8.5	9
224	Electrochemical Stability of Orthopedic Porous NiTi Shape Memory Alloys Treated by Different Surface Modification Techniques. <i>Journal of the Electrochemical Society</i> , 2009 , 156, C187	3.9	9
223	Low temperature growth and properties of ZnO nanorod arrays. <i>Advances in Natural Sciences:</i> Nanoscience and Nanotechnology, 2011 , 2, 035006	1.6	9
222	HREM studies on the microstructure of severely cold-rolled TiNi alloy after reverse martensitic transformation. <i>Materials Letters</i> , 1999 , 41, 9-15	3.3	9
221	Microstructure and texture evolution of fine-grained Mg-Zn-Y-Nd alloy micro-tubes for biodegradable vascular stents processed by hot extrusion and rapid cooling. <i>Journal of Magnesium and Alloys</i> , 2020 , 8, 873-882	8.8	9
220	Hierarchical macro-microporous WPU-ECM scaffolds combined with Microfracture Promote Articular Cartilage Regeneration in Rabbits. <i>Bioactive Materials</i> , 2021 , 6, 1932-1944	16.7	9
219	Strategic Advances in Spatiotemporal Control of Bioinspired Phenolic Chemistries in Materials Science. <i>Advanced Functional Materials</i> , 2021 , 31, 2008821	15.6	9
218	Designing HA/PEI nanoparticle composite coating on biodegradable MgInII-Nd alloy to direct cardiovascular cells fate. <i>Smart Materials in Medicine</i> , 2021 , 2, 124-133	12.9	9
217	Achieving High Strength and High Electrical Conductivity in a CuCrZr Alloy Using Equal-Channel Angular Pressing. <i>Acta Metallurgica Sinica (English Letters</i>), 2018 , 31, 1084-1088	2.5	9
216	Photothermal therapy with regulated Nrf2/NF- B signaling pathway for treating bacteria-induced periodontitis. <i>Bioactive Materials</i> , 2022 , 9, 428-445	16.7	9
215	2017,		9

214	High strength and high electrical conductivity CuMg alloy prepared by cryorolling. <i>Transactions of Nonferrous Metals Society of China</i> , 2019 , 29, 595-600	3.3	8
213	In vitro and in vivo studies on pure Mg, MgIlCa and MgIlSr alloys processed by equal channel angular pressing. <i>Nano Materials Science</i> , 2020 , 2, 96-108	10.2	8
212	A numerical corrosion-fatigue model for biodegradable Mg alloy stents. <i>Acta Biomaterialia</i> , 2019 , 97, 671-680	10.8	8
211	In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. <i>Acta Biomaterialia</i> , 2019 , 97, 623-636	10.8	8
210	Effects of fluctuant magnesium concentration on phenotype of the primary chondrocytes. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 4455-63	5.4	8
209	Two-way shape memory effect of TiNiSn alloys developed by martensitic deformation. <i>Materials Science & Microstructure and Processing</i> , 2012 , 550, 434-437	5.3	8
208	Effect of aging on martensitic transformation behavior of Ti48.8Ni50.8V0.4 alloy. <i>Journal of Materials Science</i> , 2011 , 46, 6432-6436	4.3	8
207	Study of deformation micromechanism in cold-deformed TiNi based alloys. <i>Intermetallics</i> , 2005 , 13, 281	-388	8
206	Investigating the stress corrosion cracking of a biodegradable Zn-0.8 lwt%Li alloy in simulated body fluid. <i>Bioactive Materials</i> , 2021 , 6, 1468-1478	16.7	8
205	Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. <i>Chemical Engineering Journal</i> , 2021 , 417, 129317	14.7	8
204	Cu nanoparticle-decorated two-dimensional carbon nanosheets with superior photothermal conversion efficiency of 65 % for highly efficient disinfection under near-infrared light. <i>Journal of Materials Science and Technology</i> , 2021 , 87, 83-94	9.1	8
203	Three-dimensional-printed individualized porous implants: A new "implant-bone" interface fusion concept for large bone defect treatment. <i>Bioactive Materials</i> , 2021 , 6, 3659-3670	16.7	8
202	Practical strategy to construct anti-osteosarcoma bone substitutes by loading cisplatin into 3D-printed titanium alloy implants using a thermosensitive hydrogel. <i>Bioactive Materials</i> , 2021 , 6, 4542-	4557	8
201	Biological effect and molecular mechanism study of biomaterials based on proteomic research. Journal of Materials Science and Technology, 2017 , 33, 607-615	9.1	7
200	Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn. <i>Additive Manufacturing</i> , 2020 , 33, 101134	6.1	7
199	On the Influence of Athermal and Phase Instabilities on the Scale of Precipitation of the Hase Industrial Phase in Metastable Ti Alloys. <i>Jom</i> , 2016 , 68, 1343-1349	2.1	7
198	Effect of Zr addition on the microstructure, phase transformation and mechanical property of Ni50Mn25Ga17Cu8 alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 617, 46-51	5.3	7
197	In Vitro Comparative Effect of Three Novel Borate Bioglasses on the Behaviors of Osteoblastic MC3T3-E1 Cells. <i>Journal of Materials Science and Technology</i> , 2014 , 30, 979-983	9.1	7

19	6 Effect of Solution Pretreatment on Homogeneity and Corrosion Resistance of Biomedical Mg@n@a Alloy Processed by High Pressure Torsion . <i>Advanced Engineering Materials</i> , 2017 , 19, 1600326	3.5	7	
19	Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2014 , 25, 1013-27	3.5	7	
19	Alkali-heat treatment of a low modulus biomedical Ti-27Nb alloy. <i>Biomedical Materials (Bristol)</i> , 2009 , 4, 044108	3.5	7	
19	The electrochemical behavior of a Ti50Ni47Fe3 shape memory alloy. <i>Materials Letters</i> , 2006 , 60, 1646-1	6 <u>5</u> .9	7	
19	Sulfur-regulated defect engineering for enhanced ultrasonic piezocatalytic therapy of bacteria-infected bone defects. <i>Chemical Engineering Journal</i> , 2022 , 435, 134624	14.7	7	
19	The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds <i>Bioactive Materials</i> , 2022 , 13, 200-211	16.7	7	
19	Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria Nature Communications, 2022 , 13, 2461	17.4	7	
18	Micro- and Nanohemispherical 3D Imprints Modulate the Osteogenic Differentiation and Mineralization Tendency of Bone Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 35513-35524	9.5	6	
18	New nitinol endovascular stent-graft system for abdominal aortic aneurysm with finite element analysis and experimental verification. <i>Rare Metals</i> , 2019 , 38, 495-502	5.5	6	
18	Characterization of the Interfacial Structure of Coarse Precipitates in a Metastable ITi Alloy Ti-5Al-5Mo-5V-3Cr. <i>Jom</i> , 2019 , 71, 2291-2295	2.1	6	
18	Rapid and highly effective bacteria-killing by polydopamine/IR780@MnO2IIi using near-infrared light. <i>Progress in Natural Science: Materials International</i> , 2020 , 30, 677-685	3.6	6	
18	In vitro characterization of ZM21 mini-tube used for biodegradable metallic stent. <i>Materials Letters</i> , 2018 , 211, 261-265	3.3	6	
18	Fracture behavior and structural transition of Ni46Mn33Ga17Cu4\(\mathbb{\textrm{W}}\)Zrx alloys. <i>Materials Science</i> 4 & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014 , 607, 95-101	5.3	6	
18	Effects of ball milling time on porous TiBAg alloy and its apatite-inducing abilities. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 1356-1366	3.3	6	
18	A Biodegradable Coating Based on Self-Assembled Hybrid Nanoparticles to Control the Performance of Magnesium. <i>Macromolecular Chemistry and Physics</i> , 2015 , 216, 1952-1962	2.6	6	
18	Surface modification by natural biopolymer coatings on magnesium alloys for biomedical applications 2015 , 301-333		6	
18	Doping inorganic ions to regulate bioactivity of CaP coating on bioabsorbable high purity magnesium. <i>Progress in Natural Science: Materials International</i> , 2014 , 24, 479-485	3.6	6	
17	A novel biofuel cell based on electrospun collagen-carbon nanotube nanofibres. <i>Bio-Medical Materials and Engineering</i> , 2014 , 24, 229-35	1	6	

178	Formation mechanism of novel two-dimensional single crystalline dendritic copper plates in an aqueous environment. <i>Acta Materialia</i> , 2011 , 59, 7177-7188	8.4	6
177	Enhanced Bioactivity of Biomedical NiTi Through Surface Plasma Polymerization. <i>Nanoscience and Nanotechnology Letters</i> , 2015 , 7, 220-225	0.8	6
176	Oxygen Vacancies-Rich Heterojunction of Ti C /BiOBr for Photo-Excited Antibacterial Textiles. <i>Small</i> , 2021 , e2104448	11	6
175	Biomimicking Bone-Implant Interface Facilitates the Bioadaption of a New Degradable Magnesium Alloy to the Bone Tissue Microenvironment. <i>Advanced Science</i> , 2021 , 8, e2102035	13.6	6
174	In vitro and in vivo studies to evaluate the feasibility of Zn-0.1Li and Zn-0.8Mg application in the uterine cavity microenvironment compared to pure zinc. <i>Acta Biomaterialia</i> , 2021 , 123, 393-406	10.8	6
173	Fabrication of Citric Acid/RGD Multilayers on Mg-Zn-Y-Nd Alloy via Layer-by-Layer Self-Assembly for Promoting Surface Biocompatibility. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2002241	4.6	6
172	Proteomic profile of mouse fibroblasts exposed to pure magnesium extract. <i>Materials Science and Engineering C</i> , 2016 , 69, 522-31	8.3	6
171	Exploring the effect of amino acid and glucose on the biodegradation of pure Zn. <i>Corrosion Science</i> , 2020 , 170, 108661	6.8	6
170	Nitrogen-containing bisphosphonate-loaded micro-arc oxidation coating for biodegradable magnesium alloy pellets inhibits osteosarcoma through targeting of the mevalonate pathway. <i>Acta Biomaterialia</i> , 2021 , 121, 682-694	10.8	6
169	Corrosion behavior of Mg wires for ureteral stent in artificial urine solution. <i>Corrosion Science</i> , 2021 , 189, 109567	6.8	6
168	Material-herbology: An effective and safe strategy to eradicate lethal viral-bacterial pneumonia. <i>Matter</i> , 2021 , 4, 3030-3048	12.7	6
167	Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process. <i>Materials Letters</i> , 2021 , 301, 130283	3.3	6
166	Sol-gel coating loaded with inhibitor on ZE21B Mg alloy for improving corrosion resistance and endothelialization aiming at potential cardiovascular application. <i>Colloids and Surfaces B: Biointerfaces</i> , 2021 , 207, 111993	6	6
165	Microstructure and martensitic transformation of TiNiNbB shape memory alloys. <i>Intermetallics</i> , 2015 , 64, 32-36	3.5	5
164	In vitro investigation of cellular effects of magnesium and magnesium-calcium alloy corrosion products on skeletal muscle regeneration. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 2503-2	912	5
163	Biological behavior of fibroblast on contractile collagen hydrogel crosslinked by 🛭 rradiation. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 2669-79	5.4	5
162	The inverse correlation between series resistance and parallel resistance of small molecule organic solar cells. <i>Progress in Natural Science: Materials International</i> , 2015 , 25, 323-326	3.6	5
161	ZnS nanorods with tripod-like and tetrapod-like legs. <i>Advances in Natural Sciences: Nanoscience and Nanotechnology</i> , 2010 , 1, 035005	1.6	5

(2009-2009)

160	Enhanced Bioactivity of Sandblasted and Acid-Etched Titanium Surfaces. <i>Advanced Materials Research</i> , 2009 , 79-82, 393-396	0.5	5	
159	Phase transformation and microstructure of NiMnta ferromagnetic shape memory alloy particles. <i>Physica Scripta</i> , 2007 , T129, 227-230	2.6	5	
158	Influence of negative voltage on the structure and properties of DLC films deposited on NiTi alloys by PBII. <i>Journal of Materials Science</i> , 2006 , 41, 4179-4183	4.3	5	
157	FeS2 (pyrite) electrodeposition thin films and study of growth mechanism. <i>Science in China Series D: Earth Sciences</i> , 2005 , 48, 601		5	
156	A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. <i>Biomaterials Science</i> , 2021 , 9, 8202-8220	7.4	5	
155	Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis. <i>Chemical Engineering Journal</i> , 2021 , 431, 133279	14.7	5	
154	In vitro studies of biodegradable Zn-0.1Li alloy for potential esophageal stent application. <i>Materials Letters</i> , 2020 , 275, 128190	3.3	5	
153	Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank's solution. <i>Scientific Reports</i> , 2016 , 6, 35803	4.9	5	
152	Based on the synergistic effect of Mg and antibacterial peptides to improve the corrosion resistance, antibacterial ability and osteogenic activity of magnesium-based degradable metals. <i>Biomaterials Science</i> , 2021 , 9, 807-825	7.4	5	
151	Photothermal-controlled sustainable degradation of protective coating modified Mg alloy using near-infrared light. <i>Rare Metals</i> , 2021 , 40, 2538-2551	5.5	5	
150	Bioadaptability of biomaterials: Aiming at precision medicine. <i>Matter</i> , 2021 , 4, 2648-2650	12.7	5	
149	Effect of aging and ball milling on the phase transformation of Ni50Mn25Ga17Cu8\(\mathbb{Z}\)Trx alloys. <i>Intermetallics</i> , 2015 , 58, 56-61	3.5	4	
148	Microstructure and phase transformation of Ni46Mn33Ga17Cu4⊠Zrx alloys. <i>Materials Letters</i> , 2014 , 116, 307-310	3.3	4	
147	Microstructure and mechanical properties of Zn based composites reinforced by Ti3AlC2. <i>Advances in Applied Ceramics</i> , 2015 , 114, 315-320	2.3	4	
146	Comparative In Vitro Study of Ti-12V-9Sn Shape Memory Alloy with C.P. Ti and Ti-12V Alloy for Potential Biomedical Application. <i>Journal of Materials Engineering and Performance</i> , 2012 , 21, 2695-270	00 ^{1.6}	4	
145	Dependence of microstructure and thermal conductivity of EB-PVD thermal barrier coatings on the substrate rotation speed. <i>Physics Procedia</i> , 2011 , 18, 206-210		4	
144	Controlled synthesis and characterization of ZnSe quantum dots. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 7812-5	1.3	4	
143	Phase transformation of NiTi shape memory alloy powders prepared by ball milling. <i>Journal of Alloys and Compounds</i> , 2009 , 477, 576-579	5.7	4	

142	Characteristics of the A/D type twin boundary in 18R martensite in a CuanAl alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1998 , 251, 150-156	5.3	4
141	Phase Constitution, Mechanical Property and Corrosion Resistance of the Ti-Nb Alloys. <i>Key Engineering Materials</i> , 2006 , 324-325, 655-658	0.4	4
140	Martensitic transformation and microstructure in NbRuffe shape memory alloys. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 862-2015.	864	4
139	Effect of deposition and treatment conditions on growth of nanometer PtSi heterostructure. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000 , 18, 2406		4
138	In vivo studies on Mg-1Sc alloy for orthopedic application: A 5-months evaluation in rabbits. <i>Materials Letters</i> , 2020 , 262, 127130	3.3	4
137	Structural and Compositional Characteristics of Isothermal Omega Phase in Beta Titanium Alloys 2016 , 559-562		4
136	Rapid bacterial elimination achieved by sonodynamic Au@CuO hybrid nanocubes. <i>Nanoscale</i> , 2021 , 13, 15699-15710	7.7	4
135	Microstructure and Damping Property of Polyurethane Composites Hybridized with Ultraviolet Absorbents. <i>Advances in Materials Science and Engineering</i> , 2018 , 2018, 1-9	1.5	4
134	Exploring the biodegradation of pure Zn under simulated inflammatory condition. <i>Corrosion Science</i> , 2021 , 189, 109606	6.8	4
133	Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing <i>Bioactive Materials</i> , 2022 , 11, 181-191	16.7	4
132	Improvement of ductility and work hardening ability in a high strength Zn-Mg-Y alloy via micron-sized and submicron-sized YZn12 particles. <i>Journal of Alloys and Compounds</i> , 2021 , 877, 160268	5.7	4
131	Development of Fe-Based Degradable Metallic Biomaterials 2017 , 113-160		3
130	Osseointegration: Long-Term Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity (Adv. Healthcare Mater. 5/2019). <i>Advanced Healthcare Materials</i> , 2019 , 8, 1970020	10.1	3
129	Photocatalysis: Light-Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface (Small Methods 3/2019). <i>Small Methods</i> , 2019 , 3, 1970008	12.8	3
128	Effects of Sc addition and aging on microstructure and martensitic transformation of Ni-rich NiTiHfSc high temperature shape memory alloys. <i>Journal of Alloys and Compounds</i> , 2020 , 845, 156331	5.7	3
127	New Formulas of Shear Strain during Equal-channel Angular Pressing Process with Consideration of Influences of Velocity and Motion Trajectory. <i>Journal of Iron and Steel Research International</i> , 2016 , 23, 1020-1027	1.2	3
126	Bioabsorbable metallic stents 2018 , 99-134		3
125	Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 2682-2692	9.1	3

124	Effect of aging on martensitic transformation and superelasticity of TiNiCr shape memory alloy. Transactions of Nonferrous Metals Society of China, 2014 , 24, 2598-2605	3.3	3	
123	Type II twins and their deformation characteristics in 18R martensite in a Cu Z nAl alloy. <i>Materials Letters</i> , 1998 , 34, 351-355	3.3	3	
122	The electrochemical behavior and surface analysis of Ti49.6Ni45.1Cu5Cr0.3 alloy for orthodontic usage. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2008 , 86, 335-40	3.5	3	
121	Surface characteristics and biological properties of paclitaxel-embedding PLGA coatings on TiNi alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 438-440, 1119-1123	5.3	3	
120	Magnetic Field-Controlled Shape Memory in Ni52.5Mn23.5Ga24 Single Crystals. <i>Advanced Engineering Materials</i> , 2001 , 3, 330-333	3.5	3	
119	HREM Studies on the Microstructure of Severely Cold-Rolled TiNi Alloy after Reverse Martensitic Transformation. <i>Materials Science Forum</i> , 2000 , 327-328, 159-162	0.4	3	
118	Photo-excited antibacterial poly(Eaprolactone)@MoS2/ZnS hybrid nanofibers. <i>Chemical Engineering Journal</i> , 2022 , 434, 134764	14.7	3	
117	Synthesis and Characterization of ZnSe and ZnSe/ZnS Quantum Dots for Potential Biomedical Application. <i>Advanced Science Letters</i> , 2011 , 4, 1509-1513	0.1	3	
116	Biomedical titanium implants based on additive manufacture. <i>Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica</i> , 2016 , 46, 1097-1115	1.3	3	
115	Electrophoretic deposited boron nitride nanosheets-containing chitosan-based coating on Mg alloy for better corrosion resistance, biocompatibility and antibacterial properties. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 638, 128303	5.1	3	
114	Micro-patterned hydroxyapatite/silk fibroin coatings on Mg-Zn-Y-Nd-Zr alloys for better corrosion resistance and cell behavior guidance. <i>Frontiers of Materials Science</i> , 2020 , 14, 413-425	2.5	3	
113	Microstructure, mechanical and corrosion properties of MgInBrIIa alloys for use as potential biodegradable implant materials. <i>Corrosion Engineering Science and Technology</i> , 2020 , 55, 739-746	1.7	3	
112	An innovative strategy to treat large metaphyseal segmental femoral bone defect using customized design and 3D printed micro-porous prosthesis: a prospective clinical study. <i>Journal of Materials Science: Materials in Medicine</i> , 2020 , 31, 66	4.5	3	
111	Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent. <i>Acta Biomaterialia</i> , 2021 , 124, 382-397	10.8	3	
110	Preparation of single-phase Ti2AlN coating by magnetron sputtering with cost-efficient hot-pressed Ti-Al-N targets. <i>Ceramics International</i> , 2018 , 44, 17530-17534	5.1	3	
109	Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications. <i>Materials Science and Engineering C</i> , 2021 , 129, 112410	8.3	3	
108	Improved corrosion resistance and cytocompatibility of MgZnMMd alloy by the electrografted polycaprolactone coating. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 629, 127471	5.1	3	
107	Tuning the surface potential to reprogram immune microenvironment for bone regeneration <i>Biomaterials</i> , 2022 , 282, 121408	15.6	3	

106	Tailoring of Biodegradable Magnesium Alloy Surface with Schiff Base Coating via Electrostatic Spraying for Better Corrosion Resistance. <i>Metals</i> , 2022 , 12, 471	2.3	3
105	Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, and investigation <i>Bioactive Materials</i> , 2022 , 16, 301-319	16.7	3
104	Simultaneously enhancing the photocatalytic and photothermal effect of NH-MIL-125-GO-Pt ternary heterojunction for rapid therapy of bacteria-infected wounds <i>Bioactive Materials</i> , 2022 , 18, 42	1 ⁻¹⁶ 372	3
103	The highly effective therapy of ovarian cancer by Bismuth-doped oxygen-deficient BaTiO3 with enhanced sono-piezocatalytic effects. <i>Chemical Engineering Journal</i> , 2022 , 442, 136380	14.7	3
102	Titanium Implants Based on Additive Manufacture 2017 , 255-291		2
101	Effects of alloy elements on adsorption of fibrinogen on biodegradable magnesium alloys surfaces: The MD simulations and experimental studies. <i>Applied Surface Science</i> , 2020 , 512, 145725	6.7	2
100	Microstructure and properties of biodegradable MgInII-Nd alloy micro-tubes prepared by an improved method. <i>Journal of Alloys and Compounds</i> , 2020 , 835, 155369	5.7	2
99	Optimization of dual effects of MgflCa alloys on the behavior of chondrocytes and osteoblasts in vitro. <i>Progress in Natural Science: Materials International</i> , 2014 , 24, 433-440	3.6	2
98	Corrosion protection of Mg-Zn-Y-Nd alloy by flower-like nanostructured TiO2 film for vascular stent application. <i>Journal of Chemical Technology and Biotechnology</i> , 2013 , 88, n/a-n/a	3.5	2
97	Calcium Phosphate Coatings for Metallic Orthopedic Biomaterials 2017 , 167-183		2
96	Microstructure, Phase Transformation and Mechanical Property of Ni-Co-Mn-In Alloy Prepared by Spark Plasma Sintering. <i>Materials Science Forum</i> , 2015 , 815, 222-226	0.4	2
95	Characterization of modified magnesium and magnesium alloys for biomedical applications 2015 , 263-2	282	2
94	Mg Alloys Development and Surface Modification for Biomedical Application 2011,		2
93	Comparative Evaluation on the In Vitro Biological Performance of Ti45Al8.5Nb Intermetallic with Ti6Al4V and Ti6Al7Nb Alloys. <i>Advanced Engineering Materials</i> , 2011 , 13, B187-B193	3.5	2
92	EFFECT OF C2H2 FLOW RATE ON THE DEPOSITION OF TI-TIC-TIC/DLC GRADIENT NANO-COMPOSITE FILM ON NITI ALLOY. <i>International Journal of Modern Physics B</i> , 2010 , 24, 2357-2362	$2^{1.1}$	2
91	High-resolution Electron Microscope Observation of the Non-basal Planar Defects in 18R Martensite in a Cu-Zn-Al Alloy. <i>Journal of Materials Science Letters</i> , 1998 , 17, 1657-1659		2
90	Interface structure and mobility in martensitic shape memory alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 438-440, 900-904	5.3	2
89	Effect of aging on transformation behavior and shape memory effect of a CuAlNb high temperature shape memory alloy. <i>Journal of Materials Science</i> , 2006 , 41, 6165-6167	4.3	2

(2018-2002)

88	Microstructural Evolution and Deformation Micromechanism of Cold-Deformed TiNi-Based Alloys. <i>Materials Science Forum</i> , 2002 , 394-395, 185-192	0.4	2
87	Design and evaluation of an air-insulated catheter for intra-arterial selective cooling infusion from numerical simulation and in vitro experiment <i>Medical Engineering and Physics</i> , 2022 , 99, 103736	2.4	2
86	Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models <i>Nature Communications</i> , 2022 , 13, 535	17.4	2
85	Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals <i>Acta Biomaterialia</i> , 2022 ,	10.8	2
84	In vitro degradation behavior of novel Zntuli alloys: Roles of alloy composition and rolling processing. <i>Materials and Design</i> , 2021 , 212, 110288	8.1	2
83	Effect of nitrogen on the structure evolution and biological properties of mesoporous bioactive glass nanospheres: Experiments and simulations. <i>Journal of Non-Crystalline Solids</i> , 2022 , 578, 121329	3.9	2
82	Zn content mediated fibrinogen adsorption on biodegradable Mg-Zn alloys surfaces. <i>Journal of Magnesium and Alloys</i> , 2021 , 9, 2145-2145	8.8	2
81	Precipitation in nanostructured alloys: A brief review. MRS Bulletin, 2021, 46, 250-257	3.2	2
80	Investigation of Mg-xLi-Zn alloys for potential application of biodegradable bone implant materials. <i>Journal of Materials Science: Materials in Medicine</i> , 2021 , 32, 43	4.5	2
79	Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg&Zna.2YD.8Nd Alloy. <i>Crystals</i> , 2021 , 11, 425	2.3	2
78	Effective easing of the side effects of copper intrauterine devices using ultra-fine-grained Cu-0.4Mg alloy. <i>Acta Biomaterialia</i> , 2021 , 128, 523-539	10.8	2
77	Simulation and Experimental Investigation for the Homogeneity of Ti49.2Ni50.8 Alloy Processed by Equal Channel Angular Pressing. <i>Metals</i> , 2016 , 6, 45	2.3	2
76	Inverted Hydration Layers on Bio-Magnesium Surfaces in the Initial Degradation Stage and their Influence on Adsorption of Amino Acid Analogues: The Metadynamics Simulations. <i>Langmuir</i> , 2019 , 35, 17009-17015	4	2
75	Fabrication of Cr2AlC coating from a cost-efficient CrAlC target by arc ion plating. <i>Surface Innovations</i> , 2019 , 7, 4-9	1.9	2
74	Biodegradable metal-derived magnesium and sodium enhances bone regeneration by angiogenesis aided osteogenesis and regulated biological apatite formation. <i>Chemical Engineering Journal</i> , 2021 , 410, 127616	14.7	2
73	Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities. <i>Journal of Materials Science and Technology</i> , 2021 , 71, 31-4	43 ^{9.1}	2
72	Synthesis and degradation behaviour of Zn-modified coating on Mg alloy. <i>Surface Engineering</i> , 2021 , 37, 963-971	2.6	2
71	Microstructure, mechanical and corrosion properties of ultrafine-grained Mg-2%Sr alloy. <i>IOP Conference Series: Materials Science and Engineering</i> , 2018 , 380, 012014	0.4	2

52	High resolution electron microscope observation of two kinds of intervariant boundaries in 18R martensite in a CuZnAl alloy. <i>Journal of Materials Science Letters</i> , 1998 , 17, 395-397		1
51	The Studies on Biocompatibility of Self-Expanding NiTi Stent and Apoptosis of Smooth Muscle Cells after Stenting. <i>Key Engineering Materials</i> , 2005 , 288-289, 587-590	0.4	1
50	A robust calcium carbonate (CaCO3) coating on biomedical MgZnCa alloy for promising corrosion protection. <i>Corrosion Science</i> , 2022 , 198, 110124	6.8	1
49	Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy. Journal of Materials Science and Technology, 2022 , 114, 90-101	9.1	1
48	Magnesium cationic cue enriched interfacial tissue microenvironment nurtures the osseointegration of gamma-irradiated allograft bone <i>Bioactive Materials</i> , 2022 , 10, 32-47	16.7	1
47	Construction of Bio-functionalized ZnO Coatings on Titanium Implants with Both Self-Antibacterial and Osteoinductive Properties 2020 , 169-182		1
46	TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration		1
45	Manufacturing of cardiovascular stents 2020 , 317-340		1
44	Microstructure, mechanical properties and corrosion fatigue behaviour of biodegradable MgInMINd alloy prepared by double extrusion. <i>Corrosion Engineering Science and Technology</i> , 2021 , 56, 584-593	1.7	1
43	Influence of Laser Energy Input and Shielding Gas Flow on Evaporation Fume during Laser Powder Bed Fusion of Zn Metal. <i>Materials</i> , 2021 , 14,	3.5	1
42	Self-ion irradiation response of (CoCrFeNi)94Ti2Al4 alloy containing coherent nanoprecipitates. <i>Journal of Nuclear Materials</i> , 2021 , 549, 152889	3.3	1
41	Microstructure and mechanical properties of the sub-rapidly solidified Mgጀnያያለd alloy prepared by step-copper mold casting. <i>Materials Today Communications</i> , 2021 , 27, 102308	2.5	1
40	Influence of the second phase on protein adsorption on biodegradable Mg alloys' surfaces: Comparative experimental and molecular dynamics simulation studies. <i>Acta Biomaterialia</i> , 2021 , 129, 323-332	10.8	1
39	Microstructure, mechanical properties, corrosion behavior and hemolysis of as-extruded biodegradable Mg-Sn-Zn alloy 2016 ,		1
38	First-principles studies on structure stability, segregation, and work function of Mg doped with metal elements. <i>International Journal of Quantum Chemistry</i> , 2021 , 121, e26626	2.1	1
37	Eco-friendly bacteria-killing by nanorods through mechano-puncture with top selectivity <i>Bioactive Materials</i> , 2022 , 15, 173-184	16.7	1
36	Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur <i>Bioactive Materials</i> , 2023 , 19, 12-23	16.7	1
35	Reversing Multidrug-Resistant Escherichia coli by Compromising Its BAM Biogenesis and Enzymatic Catalysis through Microwave Hyperthermia Therapy. <i>Advanced Functional Materials</i> ,2202887	15.6	1

34	Diagnostics of the thickness of a plasma electrolytic oxidation coating on a nanostructured Mg-Sr alloy. <i>IOP Conference Series: Materials Science and Engineering</i> , 2018 , 292, 012067	0.4	0
33	Development of Biodegradable Zn-Based Medical Implants 2017 , 311-329		O
32	Biodegradation Mechanism and Influencing Factors of Mg and Its Alloys 2015, 37-68		O
31	Deformation mechanism of hot spinning of NiTi shape memory alloy tube based on FEM. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2012 , 27, 811-814	1	O
30	Biodegradable ZnBr alloys with enhanced mechanical and biocompatibility for biomedical applications. <i>Smart Materials in Medicine</i> , 2022 , 3, 117-127	12.9	0
29	The effect of simulated inflammatory conditions on the corrosion of Mg, Fe and CoCrMo. <i>Materials Letters</i> , 2021 , 308, 131197	3.3	O
28	Local pH and oxygen concentration at the interface of Zn alloys in Tris-HCl or HEPES buffered Hanks Balanced salt solution. <i>Corrosion Science</i> , 2022 , 197, 110061	6.8	0
27	Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials <i>Bioactive Materials</i> , 2022 , 11, 140-153	16.7	O
26	Shape Memory Biomaterials and Their Clinical Applications 2021 , 195-255		О
25	Preparation of Biodegradable Mg/ETCP Biofunctional Gradient Materials by Friction Stir Processing and Pulse Reverse Current Electrodeposition. <i>Acta Metallurgica Sinica (English Letters)</i> , 2020 , 33, 103-114	2.5	O
24	Mussel bioinspired morphosynthesis of substrate anchored core-shell silver self-assemblies with multifunctionality for bioapplications. <i>Materials Science and Engineering C</i> , 2021 , 123, 112025	8.3	0
23	Simulation of dynamic recrystallization behavior of hot extruded Mg-Zn-Y-Nd alloy tubes by the finite element method. <i>Materials Today Communications</i> , 2021 , 27, 102384	2.5	O
22	Preparation and characterization of air sprayed silk fibroin/silica-based thermal-insulation coatings on catheters for cerebral hypothermia therapy. <i>Surface Innovations</i> ,1-12	1.9	0
21	Strain states and unique properties in cold-rolled TiNi shape memory alloys. <i>Acta Materialia</i> , 2022 , 231, 117890	8.4	Ο
20	A compound Schiff base coating on biomedical magnesium alloy for enhanced corrosion resistance and biocompatibility 2022 , 100003		О
19	Future Research on Revolutionizing Metallic Biomaterials 2017 , 293-306		
18	Development of Mg-Based Degradable Metallic Biomaterials 2017 , 59-112		
17	Development of Zn-Based Degradable Metallic Biomaterials 2017 , 161-188		

LIST OF PUBLICATIONS

Development of Bulk Metallic Glasses for Biomedical Application 2017, 189-221 16 Development of Bulk Nanostructured Metallic Biomaterials 2017, 223-253 15 Fabrication, Testing and Performance of Rare Earth-Containing Magnesium Biodegradable Metals 14 2016, 311-316 Heterogenous Nucleation During [j] [Transformation in Titanium Alloys 2016, 1931-1936 13 Development of Ultrafine Emicrostructures in a Metastable Ditanium Alloy 2016, 521-527 12 Mg with High Purity for Biomedical Applications 2015, 143-172 11 Current Research Activities of Biomedical Mg Alloys in China 2011, 397-399 10 The potential biohazards of nanosized wear particles at boneprosthesis interface. Asia-Pacific 1.3 Journal of Chemical Engineering, 2011, 6, 563-568 Fatigue Behavior of Ni-Ti Alloy Endodontic Files under Ultrasonic Unconstrained Condition. Key 8 0.4 Engineering Materials, 2009, 417-418, 77-80 Magnesium Alloy Stent Expansion Behavior Simulated by Finite Element Method. Applied Mechanics 0.3 and Materials, **2012**, 232, 697-700 Additive Manufacturing of Bioscaffolds for Bone Regeneration 2020, 313-332 6 Current Research Activities of Biomedical Magnesium Alloys in China 2011, 399-399 Very Fine-Grained Cu-0.4Mq Alloy Improving Intrauterine Device. Microscopy and Microanalysis, 0.5 **2021**, 27, 3464-3465 Investigation of Anterface Structure in Titanium Alloy Using Hrstem 2016, 419-423 Characterization of Alpha/Beta Interface Structure in a Titanium Alloy Using Aberration-Corrected 0.5 Scanning Transmission Electron Microscope. Microscopy and Microanalysis, 2016, 22, 1974-1975 pH Stimuli-Responsive, Rapidly Self-healable Coatings Enhanced the Corrosion Resistance and 11 Osteogenic Differentiation of Mq-1Ca Osteoimplant.. Small, 2022, e2106056