Yf Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938179/publications.pdf Version: 2024-02-01

YE THENC

#	Article	IF	CITATIONS
1	Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, 1998, , 130-137.	1.0	2,012
2	Biodegradable metals. Materials Science and Engineering Reports, 2014, 77, 1-34.	14.8	1,816
3	The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29, 1329-1344.	5.7	1,370
4	In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30, 484-498.	5.7	1,151
5	Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering Reports, 2014, 80, 1-36.	14.8	854
6	Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nature Medicine, 2016, 22, 1160-1169.	15.2	666
7	Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures. ACS Nano, 2017, 11, 9010-9021.	7.3	591
8	Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science and Technology, 2013, 29, 489-502.	5.6	586
9	Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature, 2019, 576, 91-95.	13.7	575
10	A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China, 2010, 4, 111-115.	0.5	478
11	In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia, 2012, 8, 2360-2374.	4.1	384
12	Current Challenges and Concepts of the Thermomechanical Treatment of Nickel-Titanium Instruments. Journal of Endodontics, 2013, 39, 163-172.	1.4	380
13	Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials, 2010, 31, 1093-1103.	5.7	369
14	Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Nearâ€Infrared Light. Advanced Materials, 2018, 30, e1801808.	11.1	364
15	Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy. Acta Biomaterialia, 2011, 7, 1880-1889.	4.1	345
16	Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomaterialia, 2015, 21, 237-249.	4.1	338
17	Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review. Acta Biomaterialia, 2018, 79, 23-36.	4.1	338
18	Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Materials Science and Engineering C, 2010, 30, 1204-1210.	3.8	332

#	Article	IF	CITATIONS
19	Progress of biodegradable metals. Progress in Natural Science: Materials International, 2014, 24, 414-422.	1.8	317
20	Recent advances in bulk metallic glasses for biomedical applications. Acta Biomaterialia, 2016, 36, 1-20.	4.1	314
21	Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomaterialia, 2016, 45, 2-30.	4.1	306
22	Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nature Communications, 2019, 10, 4490.	5.8	306
23	Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation and Differentiation To Promote Bacteria-Accompanied Wound Healing. ACS Nano, 2018, 12, 1747-1759.	7.3	303
24	Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia, 2011, 7, 1407-1420.	4.1	299
25	Physical Properties of 5 Root Canal Sealers. Journal of Endodontics, 2013, 39, 1281-1286.	1.4	298
26	Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 2020, 11, 401.	5.8	290
27	Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank's solution: The influence of microstructural features. Corrosion Science, 2014, 79, 69-82.	3.0	289
28	Corrosion fatigue behaviors of two biomedical Mg alloys – AZ91D and WE43 – In simulated body fluid. Acta Biomaterialia, 2010, 6, 4605-4613.	4.1	285
29	Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 2009, 255, 6433-6438.	3.1	283
30	Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nature Communications, 2021, 12, 1224.	5.8	283
31	Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials, 2016, 75, 203-222.	5.7	282
32	Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Scientific Reports, 2015, 5, 10719.	1.6	278
33	Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020, 8, 42-65.	5.5	274
34	Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon, 2014, 67, 185-197.	5.4	267
35	The recent progress on metal–organic frameworks for phototherapy. Chemical Society Reviews, 2021, 50, 5086-5125	18.7	262
36	Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials, 2017, 145, 92-105.	5.7	257

#	Article	IF	CITATIONS
37	In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(<scp>l</scp> -lactic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants. ACS Applied Materials & Interfaces, 2016, 8, 10014-10028.	4.0	256
38	Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Applied Catalysis B: Environmental, 2020, 261, 118248.	10.8	255
39	Rapid Sterilization and Accelerated Wound Healing Using Zn ²⁺ and Graphene Oxide Modified gâ€C ₃ N ₄ under Dual Light Irradiation. Advanced Functional Materials, 2018, 28, 1800299.	7.8	246
40	Zinc-Based Biomaterials for Regeneration and Therapy. Trends in Biotechnology, 2019, 37, 428-441.	4.9	243
41	Balancing Bacteria–Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods. ACS Nano, 2017, 11, 11250-11263.	7.3	230
42	Tuning the Bandgap of Photo-Sensitive Polydopamine/Ag ₃ PO ₄ /Graphene Oxide Coating for Rapid, Noninvasive Disinfection of Implants. ACS Central Science, 2018, 4, 724-738.	5.3	227
43	Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Materials and Design, 2015, 83, 95-102.	3.3	226
44	Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	7.8	226
45	Synergistic Bacteria Killing through Photodynamic and Physical Actions of Graphene Oxide/Ag/Collagen Coating. ACS Applied Materials & Interfaces, 2017, 9, 26417-26428.	4.0	223
46	In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. Journal of Materials Chemistry B, 2013, 1, 475-484.	2.9	214
47	Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Materials and Design, 2016, 94, 95-104.	3.3	214
48	Highly Effective and Noninvasive Nearâ€Infrared Eradication of a <i>Staphylococcus aureus</i> Biofilm on Implants by a Photoresponsive Coating within 20 Min. Advanced Science, 2019, 6, 1900599.	5.6	212
49	Functionalized TiO ₂ Based Nanomaterials for Biomedical Applications. Advanced Functional Materials, 2014, 24, 5464-5481.	7.8	208
50	A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate. Acta Biomaterialia, 2009, 5, 2790-2799.	4.1	205
51	Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires. Journal of the American Ceramic Society, 2000, 83, 3228-3230.	1.9	203
52	Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning. Materials Science and Engineering C, 2010, 30, 1014-1021.	3.8	198
53	In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomaterialia, 2018, 71, 200-214.	4.1	197
54	Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires. Advanced Materials, 2000, 12, 1343-1345.	11.1	194

#	Article	IF	CITATIONS
55	Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys. Acta Biomaterialia, 2014, 10, 544-556.	4.1	194
56	Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011, 84, 97-102.	2.5	191
57	InÂvitro and inÂvivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model. Biomaterials, 2015, 64, 57-69.	5.7	190
58	Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomaterialia, 2015, 11, 554-562.	4.1	184
59	Rapid Photo-Sonotherapy for Clinical Treatment of Bacterial Infected Bone Implants by Creating Oxygen Deficiency Using Sulfur Doping. ACS Nano, 2020, 14, 2077-2089.	7.3	182
60	Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomaterialia, 2018, 77, 352-364.	4.1	180
61	Rapid and Superior Bacteria Killing of Carbon Quantum Dots/ZnO Decorated Injectable Folic Acidâ€Conjugated PDA Hydrogel through Dualâ€Light Triggered ROS and Membrane Permeability. Small, 2019, 15, e1900322.	5.2	180
62	Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Applied Physics Letters, 1999, 75, 2990-2992.	1.5	176
63	Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomaterialia, 2019, 98, 3-22.	4.1	176
64	Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Science Advances, 2021, 7, .	4.7	176
65	Comparative inÂvitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) asÂBiodegradable Metals. Journal of Materials Science and Technology, 2013, 29, 619-627.	5.6	175
66	Biofunctionalization of metallic implants by calcium phosphate coatings. Bioactive Materials, 2019, 4, 196-206.	8.6	173
67	Tailored Surface Treatment of 3D Printed Porous Ti6Al4V by Microarc Oxidation for Enhanced Osseointegration via Optimized Bone In-Growth Patterns and Interlocked Bone/Implant Interface. ACS Applied Materials & Interfaces, 2016, 8, 17964-17975.	4.0	172
68	An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioactive Materials, 2018, 3, 1-18.	8.6	171
69	Electrophoretic Deposited Stable Chitosan@MoS ₂ Coating with Rapid In Situ Bacteriaâ€Killing Ability under Dualâ€Light Irradiation. Small, 2018, 14, e1704347.	5.2	171
70	Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomaterialia, 2019, 97, 23-45.	4.1	170
71	Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomaterials Science, 2018, 6, 2110-2121.	2.6	168
72	Comparative Study of Torsional and Bending Properties for Six Models of Nickel-Titanium Root Canal Instruments with Different Cross-Sections. Journal of Endodontics, 2006, 32, 372-375.	1.4	167

#	Article	IF	CITATIONS
73	Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Materials Science and Engineering C, 2010, 30, 827-832.	3.8	165
74	Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. Nature Communications, 2020, 11, 4446.	5.8	165
75	Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and inÂvitro corrosion behavior of biodegradable Zn–1.5Mg alloy. Journal of Alloys and Compounds, 2016, 664, 444-452.	2.8	162
76	Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials. ACS Applied Materials & Interfaces, 2017, 9, 27453-27461.	4.0	162
77	2D MOF Periodontitis Photodynamic Ion Therapy. Journal of the American Chemical Society, 2021, 143, 15427-15439.	6.6	161
78	Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomaterialia, 2011, 7, 2758-2767.	4.1	160
79	A General Synthetic Route to III-V Compound Semiconductor Nanowires. Advanced Materials, 2001, 13, 591-594.	11.1	158
80	Effect of ageing treatment on the transformation behaviour of Ti–50.9at.% Ni alloy. Acta Materialia, 2008, 56, 736-745.	3.8	154
81	Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. Journal of Hazardous Materials, 2020, 383, 121122.	6.5	153
82	InÂVitro Cytotoxicity Evaluation of a Novel Root RepairÂMaterial. Journal of Endodontics, 2013, 39, 478-483.	1.4	149
83	In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomaterialia, 2013, 9, 8561-8573.	4.1	149
84	Local Photothermal/Photodynamic Synergistic Therapy by Disrupting Bacterial Membrane To Accelerate Reactive Oxygen Species Permeation and Protein Leakage. ACS Applied Materials & Interfaces, 2019, 11, 17902-17914.	4.0	149
85	Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomaterialia, 2019, 98, 174-185.	4.1	148
86	In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters, 2011, 65, 540-543.	1.3	145
87	Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Materials Science and Engineering Reports, 2021, 145, 100610.	14.8	145
88	Metallurgical Characterization of Controlled Memory Wire Nickel-Titanium Rotary Instruments. Journal of Endodontics, 2011, 37, 1566-1571.	1.4	144
89	Single-Atom Catalysis for Efficient Sonodynamic Therapy of Methicillin-Resistant <i>Staphylococcus aureus</i> -Infected Osteomyelitis. ACS Nano, 2021, 15, 10628-10639.	7.3	144
90	Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application. Acta Biomaterialia, 2013, 9, 8488-8498.	4.1	143

#	Article	IF	CITATIONS
91	In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomaterialia, 2010, 6, 1783-1791.	4.1	142
92	Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chemical Engineering Journal, 2020, 396, 125194.	6.6	142
93	Dopamine Modified Organic–Inorganic Hybrid Coating for Antimicrobial and Osteogenesis. ACS Applied Materials & Interfaces, 2016, 8, 33972-33981.	4.0	141
94	Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn–Mg–Sr alloys as biodegradable metals. Materials Letters, 2016, 162, 242-245.	1.3	141
95	Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosensors and Bioelectronics, 2009, 24, 2352-2357.	5.3	140
96	Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials, 2018, 174, 1-16.	5.7	140
97	Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging. Advanced Materials Interfaces, 2016, 3, 1500494.	1.9	138
98	High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials, 2016, 81, 14-26.	5.7	136
99	Eradicating Multidrugâ€Resistant Bacteria Rapidly Using a Multi Functional gâ€C ₃ N ₄ @ Bi ₂ S ₃ Nanorod Heterojunction with or without Antibiotics. Advanced Functional Materials, 2019, 29, 1900946.	7.8	136
100	Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomaterialia, 2020, 102, 508-528.	4.1	135
101	Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition. Chemical Physics Letters, 2000, 327, 263-270.	1.2	133
102	Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm Infection on Bone Implant. ACS Nano, 2020, 14, 8157-8170.	7.3	133
103	Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Materials Science and Engineering C, 2015, 46, 202-206.	3.8	131
104	Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta Biomaterialia, 2011, 7, 3196-3208.	4.1	128
105	Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Materials Chemistry and Physics, 2011, 125, 606-611.	2.0	127
106	In Situ Disinfection through Photoinspired Radical Oxygen Species Storage and Thermalâ€Triggered Release from Black Phosphorous with Strengthened Chemical Stability. Small, 2018, 14, 1703197.	5.2	127
107	Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration. ACS Applied Materials & amp; Interfaces, 2018, 10, 1266-1277.	4.0	127
108	A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals. Nano Letters, 2008, 8, 3803-3808.	4.5	124

#	Article	IF	CITATIONS
109	InÂVitro Cytotoxicity of Calcium Silicate–containing Endodontic Sealers. Journal of Endodontics, 2015, 41, 56-61.	1.4	123
110	Porous Iron-Carboxylate Metal–Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity. ACS Applied Materials & Interfaces, 2017, 9, 19248-19257.	4.0	123
111	A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration. Materials Today, 2020, 36, 48-62.	8.3	123
112	The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light. Journal of Hazardous Materials, 2019, 377, 227-236.	6.5	122
113	In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1778-1784.	1.7	120
114	Surface functionalization of biomaterials by radical polymerization. Progress in Materials Science, 2016, 83, 191-235.	16.0	120
115	TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nature Communications, 2021, 12, 2885.	5.8	118
116	In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomaterialia, 2020, 108, 358-372.	4.1	117
117	Visible light responsive CuS/ protonated g-C3N4 heterostructure for rapid sterilization. Journal of Hazardous Materials, 2020, 393, 122423.	6.5	116
118	Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomaterialia, 2019, 98, 196-214.	4.1	114
119	Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Applied Surface Science, 2008, 255, 494-497.	3.1	113
120	Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230, 119641.	5.7	113
121	Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials, 2013, 34, 7016-7032.	5.7	112
122	Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. ACS Applied Materials & Interfaces, 2019, 11, 6809-6819.	4.0	111
123	Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization. European Polymer Journal, 2008, 44, 2476-2481.	2.6	109
124	Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn–1.2Mg alloy for biodegradable implants. RSC Advances, 2016, 6, 86410-86419.	1.7	108
125	Dual Metal–Organic Framework Heterointerface. ACS Central Science, 2019, 5, 1591-1601	5.3	108
126	A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light. Bioactive Materials, 2019, 4, 17-21.	8.6	108

#	Article	IF	CITATIONS
127	Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Materials Letters, 2010, 64, 1871-1874.	1.3	107
128	In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Colloids and Surfaces B: Biointerfaces, 2011, 88, 254-259.	2.5	107
129	The microstructure and properties of cyclic extrusion compression treated Mg–Zn–Y–Nd alloy for vascular stent application. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 8, 1-7.	1.5	107
130	A review on in vitro corrosion performance test of biodegradable metallic materials. Transactions of Nonferrous Metals Society of China, 2013, 23, 2283-2293.	1.7	107
131	In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Materials Science and Engineering C, 2014, 35, 43-53.	3.8	105
132	Antibacterial Hybrid Hydrogels. Macromolecular Bioscience, 2021, 21, e2000252.	2.1	105
133	Bioinspired and Biomimetic AgNPs/Gentamicin-Embedded Silk Fibroin Coatings for Robust Antibacterial and Osteogenetic Applications. ACS Applied Materials & Interfaces, 2017, 9, 25830-25846.	4.0	104
134	Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioactive Materials, 2021, 6, 1588-1604.	8.6	104
135	Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization. Chemical Engineering Journal, 2021, 405, 126730.	6.6	104
136	Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials, 2011, 32, 330-338.	5.7	103
137	Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. Journal of Materials Science: Materials in Medicine, 2016, 27, 48.	1.7	103
138	In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy. Applied Surface Science, 2012, 258, 3420-3427.	3.1	102
139	Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants. ACS Applied Materials & Interfaces, 2016, 8, 16584-16594.	4.0	102
140	Photoresponsive Materials for Antibacterial Applications. Cell Reports Physical Science, 2020, 1, 100245.	2.8	102
141	Recent Progress in Photocatalytic Antibacterial. ACS Applied Bio Materials, 2021, 4, 3909-3936.	2.3	100
142	In vitro degradation of AZ31 magnesium alloy coated with nano TiO2 film by sol–gel method. Applied Surface Science, 2011, 257, 8772-8777.	3.1	99
143	InÂvivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants. Biomaterials, 2013, 34, 9863-9876.	5.7	99
144	Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg–Ca, AZ31, AZ91 alloys. Biomedical Materials (Bristol), 2009, 4, 065011.	1.7	97

#	Article	IF	CITATIONS
145	A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: In vitro and in vivo studies. Acta Biomaterialia, 2020, 106, 396-409.	4.1	97
146	Microstructures of gallium nitride nanowires synthesized by oxide-assisted method. Chemical Physics Letters, 2001, 345, 377-380.	1.2	96
147	The application of poly (glycerol–sebacate) as biodegradable drug carrier. Biomaterials, 2009, 30, 5209-5214.	5.7	96
148	Mechanical Properties of Controlled Memory and Superelastic Nickel-Titanium Wires Used in the Manufacture of Rotary Endodontic Instruments. Journal of Endodontics, 2012, 38, 1535-1540.	1.4	96
149	Additively Manufactured Macroporous Titanium with Silver-Releasing Micro-/Nanoporous Surface for Multipurpose Infection Control and Bone Repair – A Proof of Concept. ACS Applied Materials & Interfaces, 2016, 8, 28495-28510.	4.0	96
150	Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures. Applied Surface Science, 2017, 400, 14-23.	3.1	96
151	Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomaterialia, 2016, 41, 351-360.	4.1	95
152	Interfacial Zinc Phosphate is the Key to Controlling Biocompatibility of Metallic Zinc Implants. Advanced Science, 2019, 6, 1900112.	5.6	95
153	Ultrasonic Interfacial Engineering of Red Phosphorous–Metal for Eradicating MRSA Infection Effectively. Advanced Materials, 2021, 33, e2006047.	11.1	93
154	Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films. Talanta, 2008, 74, 1414-1419.	2.9	92
155	<i>In vitro</i> corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomedical Materials (Bristol), 2010, 5, 065015.	1.7	92
156	Biodegradation behavior of micro-arc oxidation coating on magnesium alloy-from a protein perspective. Bioactive Materials, 2020, 5, 398-409.	8.6	92
157	In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals. Journal of Materials Science and Technology, 2016, 32, 909-918.	5.6	91
158	Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds. Journal of Materials Science and Technology, 2021, 62, 83-95.	5.6	91
159	Effect of aging on the phase transformation and mechanical behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scripta Materialia, 2000, 42, 341-348.	2.6	90
160	Microstructure, corrosion behavior and cytotoxicity of Zr–Nb alloys for biomedical application. Materials Science and Engineering C, 2012, 32, 851-857.	3.8	89
161	Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys. Materials Science and Engineering C, 2019, 97, 156-165.	3.8	89
162	Shape memory properties of the Ti36Ni49Hf15 high temperature shape memory alloy. Materials Letters, 2000, 45, 128-132.	1.3	88

#	Article	IF	CITATIONS
163	Corrosion behaviour of Ti–Nb–Sn shape memory alloys in different simulated body solutions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 891-895.	2.6	88
164	Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan. Biomedical Materials (Bristol), 2009, 4, 044109.	1.7	87
165	Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 225-240.	1.6	87
166	Biodegradable Zn–Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomaterialia, 2020, 117, 400-417.	4.1	87
167	An Engineered Pseudoâ€Macrophage for Rapid Treatment of Bacteriaâ€Infected Osteomyelitis via Microwaveâ€Excited Antiâ€Infection and Immunoregulation. Advanced Materials, 2021, 33, e2102926.	11.1	87
168	Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing. Acta Materialia, 2007, 55, 3437-3451.	3.8	86
169	Corrosion resistance of dicalcium phosphate dihydrate/poly(lactic-co-glycolic acid) hybrid coating on AZ31 magnesium alloy. Corrosion Science, 2016, 102, 209-221.	3.0	86
170	Rapid and Highly Effective Noninvasive Disinfection by Hybrid Ag/CS@MnO ₂ Nanosheets Using Near-Infrared Light. ACS Applied Materials & Interfaces, 2019, 11, 15014-15027.	4.0	86
171	Influence of Cross-sectional Design and Dimension on Mechanical Behavior of Nickel-Titanium Instruments under Torsion and Bending: A Numerical Analysis. Journal of Endodontics, 2010, 36, 1394-1398.	1.4	85
172	Enhanced in Vitro and in Vivo Performance of Mg–Zn–Y–Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application. ACS Applied Materials & Interfaces, 2016, 8, 17842-17858.	4.0	85
173	Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@Bi2WO6 coating for rapid bacterial killing. Journal of Hazardous Materials, 2019, 380, 120818.	6.5	85
174	Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys. Journal of Materials Science and Technology, 2021, 60, 44-55.	5.6	85
175	Ag3PO4 decorated black urchin-like defective TiO2 for rapid and long-term bacteria-killing under visible light. Bioactive Materials, 2021, 6, 1575-1587.	8.6	85
176	Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Applied Physics Letters, 2001, 78, 3304-3306.	1.5	84
177	Formation mechanism of Ca-deficient hydroxyapatite coating on Mg–Zn–Ca alloy for orthopaedic implant. Applied Surface Science, 2014, 307, 92-100.	3.1	84
178	Polymeric Nanoarchitectures on Ti-Based Implants for Antibacterial Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 17323-17345.	4.0	84
179	A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials, 2019, 219, 119372.	5.7	84
180	Electrochemical corrosion behavior of biomedical Ti–22Nb and Ti–22Nb–6Zr alloys in saline medium. Materials and Corrosion - Werkstoffe Und Korrosion, 2009, 60, 788-794.	0.8	83

#	Article	IF	CITATIONS
181	Fabrication of chitosan/magnesium phosphate composite coating and the in vitro degradation properties of coated magnesium alloy. Materials Letters, 2012, 73, 59-61.	1.3	82
182	Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings. Applied Surface Science, 2013, 284, 804-810.	3.1	82
183	Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. Materials Science and Engineering C, 2017, 79, 629-637.	3.8	82
184	In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Interfaces, 2018, 10, 4394-4408.	4.0	82
185	Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Science Advances, 2020, 6, .	4.7	82
186	Characterization of TiN, TiC and TiCN coatings on Ti–50.6 at.% Ni alloy deposited by PIII and deposition technique. Surface and Coatings Technology, 2007, 201, 4909-4912.	2.2	81
187	Effects of Carbon and Nitrogen Plasma Immersion Ion Implantation on In vitro and In vivo Biocompatibility of Titanium Alloy. ACS Applied Materials & Interfaces, 2013, 5, 1510-1516.	4.0	81
188	Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomaterialia, 2017, 64, 421-436.	4.1	81
189	pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomaterialia, 2020, 115, 220-234.	4.1	81
190	Effect of Ag on the corrosion behavior of Ti–Ag alloys in artificial saliva solutions. Dental Materials, 2009, 25, 672-677.	1.6	80
191	Multifunctional MgF2/Polydopamine Coating on Mg Alloy for Vascular Stent Application. Journal of Materials Science and Technology, 2015, 31, 733-743.	5.6	80
192	Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility. Acta Biomaterialia, 2017, 58, 515-526.	4.1	80
193	Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2020, 33, 615-629.	1.5	80
194	The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scripta Materialia, 1999, 40, 1327-1331.	2.6	79
195	Synthesis and microstructure of gallium phosphide nanowires. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1115.	1.6	79
196	Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti–Nb–Sn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 146-151.	2.6	79
197	Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Materials Science and Engineering C, 2013, 33, 699-706.	3.8	79
198	Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: a pH-responsive design. Journal of Materials Chemistry B, 2016, 4, 2498-2511.	2.9	79

#	Article	IF	CITATIONS
199	Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits. Biomaterials, 2018, 157, 86-97.	5.7	79
200	Osteogenic and pH stimuli-responsive self-healing coating on biomedical Mg-1Ca alloy. Acta Biomaterialia, 2019, 92, 336-350.	4.1	79
201	From Solution to Biointerface: Graphene Self-Assemblies of Varying Lateral Sizes and Surface Properties for Biofilm Control and Osteodifferentiation. ACS Applied Materials & Interfaces, 2016, 8, 17151-17165.	4.0	78
202	Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Materials Science and Engineering C, 2012, 32, 599-606.	3.8	77
203	In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material. Materials Letters, 2015, 161, 53-56.	1.3	77
204	Na+ inserted metal-organic framework for rapid therapy of bacteria-infected osteomyelitis through microwave strengthened Fenton reaction and thermal effects. Nano Today, 2021, 37, 101090.	6.2	77
205	Self-activating anti-infection implant. Nature Communications, 2021, 12, 6907.	5.8	77
206	Tannic Acid/Fe ³⁺ /Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity. ACS Applied Materials & Interfaces, 2017, 9, 39657-39671.	4.0	76
207	Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity. Journal of Materials Science, 2006, 41, 4961-4964.	1.7	75
208	Micro-arc oxidization of a novel Mg–1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity. Applied Surface Science, 2014, 292, 1030-1039.	3.1	75
209	Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. Materials Science and Engineering C, 2020, 110, 110738.	3.8	75
210	<i>In vitro</i> study on newly designed biodegradable Feâ€X composites (X = W, CNT) prepared by spark plasma sintering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 485-497.	1.6	74
211	Metal Ion Coordination Polymer-Capped pH-Triggered Drug Release System on Titania Nanotubes for Enhancing Self-antibacterial Capability of Ti Implants. ACS Biomaterials Science and Engineering, 2017, 3, 816-825.	2.6	74
212	Lysozyme-Assisted Photothermal Eradication of Methicillin-Resistant <i>Staphylococcus aureus</i> Infection and Accelerated Tissue Repair with Natural Melanosome Nanostructures. ACS Nano, 2019, 13, 11153-11167.	7.3	74
213	A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing. Journal of Materials Science and Technology, 2020, 57, 1-11.	5.6	74
214	Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation. Journal of Alloys and Compounds, 2014, 590, 247-253.	2.8	73
215	Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Materials Science and Engineering C, 2015, 46, 387-393.	3.8	73
216	Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. Colloids and Surfaces B: Biointerfaces, 2017, 151, 165-177.	2.5	73

#	Article	IF	CITATIONS
217	Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation. ACS Applied Materials & Interfaces, 2019, 11, 41758-41769.	4.0	73
218	A pH-sensitive self-healing coating for biodegradable magnesium implants. Acta Biomaterialia, 2019, 98, 160-173.	4.1	73
219	Stress-free two-way thermoelastic shape memory and field-enhanced strain in Ni52Mn24Ga24 single crystals. Applied Physics Letters, 2000, 77, 3245-3247.	1.5	72
220	Control of growth orientation of GaN nanowires. Chemical Physics Letters, 2002, 359, 241-245.	1.2	72
221	The influence of laser welding parameters on the microstructure and mechanical property of the as-jointed NiTi alloy wires. Materials Letters, 2008, 62, 2325-2328.	1.3	72
222	Addition of Zn to the ternary Mg–Ca–Sr alloys significantly improves their antibacterial properties. Journal of Materials Chemistry B, 2015, 3, 6676-6689.	2.9	72
223	Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating. Materials and Design, 2018, 139, 351-362.	3.3	72
224	In-situ sulfuration of Cu-based metal-organic framework for rapid near-infrared light sterilization. Journal of Hazardous Materials, 2020, 390, 122126.	6.5	72
225	A review on current research status of the surface modification of Zn-based biodegradable metals. Bioactive Materials, 2022, 7, 192-216.	8.6	72
226	Carbon nanotube–hydroxyapatite nanocomposite: A novel platform for glucose/O2 biofuel cell. Biosensors and Bioelectronics, 2009, 25, 463-468.	5.3	71
227	<scp>H</scp> y <scp>F</scp> lex nickel–titanium rotary instruments after clinical use: metallurgical properties. International Endodontic Journal, 2013, 46, 720-729.	2.3	71
228	An overview of the mechanical properties of nickel–titanium endodontic instruments. Endodontic Topics, 2013, 29, 42-54.	0.5	71
229	Rapid Biofilm Elimination on Bone Implants Using Nearâ€Infraredâ€Activated Inorganic Semiconductor Heterostructures. Advanced Healthcare Materials, 2019, 8, e1900835.	3.9	71
230	Toward a Better Regeneration through Implantâ€Mediated Immunomodulation: Harnessing the Immune Responses. Advanced Science, 2021, 8, e2100446.	5.6	71
231	Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Materials Letters, 2002, 55, 111-115.	1.3	70
232	<i>In vivo</i> degradation and bone response of a composite coating on Mg–Zn–Ca alloy prepared by microarc oxidation and electrochemical deposition. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 533-543.	1.6	70
233	Enhanced Osseointegration of Zn-Mg Composites by Tuning the Release of Zn Ions with Sacrificial Mg-Rich Anode Design. ACS Biomaterials Science and Engineering, 2019, 5, 453-467.	2.6	70
234	Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioactive Materials, 2021, 6, 2315-2330.	8.6	69

#	Article	IF	CITATIONS
235	Smallest diameter carbon nanotubes. Applied Physics Letters, 2000, 77, 2831-2833.	1.5	68
236	A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell. Chemical Physics Letters, 2008, 457, 381-385.	1.2	68
237	Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank's solution. Corrosion Engineering Science and Technology, 2012, 47, 346-351.	0.7	68
238	Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Materials Science and Engineering C, 2018, 85, 214-224.	3.8	68
239	Osteoimmunomodulation, osseointegration, and <i>in vivo</i> mechanical integrity of pure Mg coated with HA nanorod/pore-sealed MgO bilayer. Biomaterials Science, 2018, 6, 3202-3218.	2.6	68
240	The enhanced near-infrared photocatalytic and photothermal effects of MXene-based heterojunction for rapid bacteria-killing. Applied Catalysis B: Environmental, 2021, 297, 120500.	10.8	68
241	Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film. Applied Surface Science, 2012, 258, 3074-3081.	3.1	67
242	Ag ₂ S@WS ₂ Heterostructure for Rapid Bacteria-Killing Using Near-Infrared Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 14982-14990.	3.2	67
243	The microstructure and linear superelasticity of cold-drawn TiNi alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 279, 25-35.	2.6	66
244	Effect of surface mechanical attrition treatment on biodegradable Mg–1Ca alloy. Materials Science and Engineering C, 2014, 35, 314-321.	3.8	66
245	Recent Development of TiNiâ€Based Shape Memory Alloys with High Cycle Stability and High Transformation Temperature. Advanced Engineering Materials, 2020, 22, 1900496.	1.6	66
246	Microstructure, Mechanical Properties, Corrosion Behavior and Biocompatibility of As-Extruded Biodegradable Mg–3Sn–1Zn–0.5Mn Alloy. Journal of Materials Science and Technology, 2016, 32, 874-882.	5.6	65
247	Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Acta Biomaterialia, 2017, 62, 418-433.	4.1	65
248	A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy. Applied Surface Science, 2018, 434, 1101-1111.	3.1	65
249	Ag/AgBr-loaded mesoporous silica for rapid sterilization and promotion of wound healing. Biomaterials Science, 2018, 6, 1735-1744.	2.6	65
250	Comparative study on the corrosion behavior of Ti–Nb and TMA alloys for dental application in various artificial solutions. Materials Science and Engineering C, 2011, 31, 702-711.	3.8	64
251	Plasma Surface Functionalized Polyetheretherketone for Enhanced Osseo-Integration at Bone-Implant Interface. ACS Applied Materials & Interfaces, 2016, 8, 3901-3911.	4.0	64
252	Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. American Journal of Physiology - Cell Physiology, 2018, 314, C404-C414.	2.1	64

#	Article	IF	CITATIONS
253	Lightâ€Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface. Small Methods, 2019, 3, 1900048.	4.6	64
254	ROS induced bactericidal activity of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in bacteria-infected rat tibias. Acta Biomaterialia, 2020, 107, 313-324.	4.1	64
255	Corrosion behaviour and biocompatibility evaluation of low modulus Ti–16Nb shape memory alloy as potential biomaterial. Materials Letters, 2009, 63, 1293-1295.	1.3	63
256	Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy. Journal of Materials Science and Technology, 2018, 34, 1805-1816.	5.6	63
257	Microstructure and corrosion properties of as sub-rapid solidification Mg–Zn–Y–Nd alloy in dynamic simulated body fluid for vascular stent application. Journal of Materials Science: Materials in Medicine, 2010, 21, 2001-2008.	1.7	62
258	Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegration functions. Journal of Materials Chemistry B, 2015, 3, 8796-8805.	2.9	62
259	In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. Acta Biomaterialia, 2019, 98, 50-66.	4.1	62
260	Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corrosion Science, 2020, 163, 108303.	3.0	62
261	Two-way shape memory effect of a TiNiHf high temperature shape memory alloy. Journal of Alloys and Compounds, 2004, 372, 180-186.	2.8	61
262	Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Interfaces, 2011, 3, 2851-2860.	4.0	61
263	Ce and Er Co-doped TiO2 for rapid bacteria- killing using visible light. Bioactive Materials, 2020, 5, 201-209.	8.6	61
264	Photo-Sono Interfacial Engineering Exciting the Intrinsic Property of Herbal Nanomedicine for Rapid Broad-Spectrum Bacteria Killing. ACS Nano, 2021, 15, 18505-18519.	7.3	61
265	Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials, 2021, 276, 121038.	5.7	60
266	Amorphous carbon nanowires investigated by near-edge-x-ray-absorption-fine-structures. Applied Physics Letters, 2001, 79, 3773-3775.	1.5	59
267	Phase transformation and precipitation in aged Ti–Ni–Hf high-temperature shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 666-670.	2.6	59
268	A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. International Endodontic Journal, 2011, 44, 357-361.	2.3	59
269	Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation. Applied Surface Science, 2012, 258, 7651-7657.	3.1	59
270	Influence of ordered L12 precipitation on strain-rate dependent mechanical behavior in a eutectic high entropy alloy. Scientific Reports, 2019, 9, 6371.	1.6	59

#	Article	IF	CITATIONS
271	Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr(Mo,Hf) eutectic alloys. Materials & Design, 2011, 32, 4810-4817.	5.1	58
272	Electrospun Chitosan-graft-PLGA nanofibres with significantly enhanced hydrophilicity and improved mechanical property. Colloids and Surfaces B: Biointerfaces, 2013, 102, 674-681.	2.5	58
273	Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe ₂ O ₃ composites. Journal of Biomedical Materials Research - Part A, 2014, 102, 2277-2287.	2.1	58
274	Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway. Scientific Reports, 2016, 6, 32323.	1.6	58
275	AgBr Nanoparticles in Situ Growth on 2D MoS ₂ Nanosheets for Rapid Bacteria-Killing and Photodisinfection. ACS Applied Materials & Interfaces, 2019, 11, 34364-34375.	4.0	58
276	Effects of annealing treatment on microstructure and tensile behavior of the Mg-Zn-Y-Nd alloy. Journal of Magnesium and Alloys, 2020, 8, 601-613.	5.5	58
277	In vitro and in vivo degradation behavior of Mg–2Sr–Ca and Mg–2Sr–Zn alloys. Bioactive Materials, 2020, 5, 275-285.	8.6	58
278	Microstructure and martensitic transformation of Ti49Ni51â^'Hf high temperature shape memory alloys. Materials Letters, 2009, 63, 1869-1871.	1.3	57
279	Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface. Applied Surface Science, 2011, 257, 5634-5640.	3.1	57
280	The rapid photoresponsive bacteria-killing of Cu-doped MoS ₂ . Biomaterials Science, 2020, 8, 4216-4224.	2.6	57
281	Formation of pyrite (FeS2) thin nano-films by thermal-sulfurating electrodeposition films at different temperature. Materials Letters, 2005, 59, 2398-2402.	1.3	56
282	Effect of ageing treatment on the deformation behaviour of Ti–50.9 at.% Ni. Acta Materialia, 2009, 57, 4773-4781.	3.8	56
283	InÂvitro Study on Biodegradable AZ31 Magnesium Alloy Fibers Reinforced PLGA Composite. Journal of Materials Science and Technology, 2013, 29, 545-550.	5.6	56
284	Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. Journal of Alloys and Compounds, 2015, 645, 137-142.	2.8	56
285	Enhancing the antibacterial efficacy of low-dose gentamicin with 5 minute assistance of photothermy at 50 ŰC. Biomaterials Science, 2019, 7, 1437-1447.	2.6	56
286	Comparative Studies on Degradation Behavior of Pure Zinc in Various Simulated Body Fluids. Jom, 2019, 71, 1414-1425.	0.9	56
287	Noble metal-based nanomaterials as antibacterial agents. Journal of Alloys and Compounds, 2022, 904, 164091.	2.8	56
288	Gelatin-functionalized carbon nanotubes for the bioelectrochemistry of hemoglobin. Electrochemistry Communications, 2007, 9, 1619-1623.	2.3	55

#	Article	IF	CITATIONS
289	An amperometric biosensor based on hemoglobin immobilized in poly(É›-caprolactone) film and its application. Biosensors and Bioelectronics, 2008, 23, 1562-1566.	5.3	55
290	A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes. Electrochemistry Communications, 2010, 12, 869-871.	2.3	55
291	Endowing polyetheretherketone with synergistic bactericidal effects and improved osteogenic ability. Acta Biomaterialia, 2018, 79, 216-229.	4.1	55
292	Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array. Materials and Design, 2019, 177, 107845.	3.3	55
293	Near-infrared light controlled fast self-healing protective coating on magnesium alloy. Corrosion Science, 2020, 163, 108257.	3.0	55
294	Micro-/Nanotopography on Bioresorbable Zinc Dictates Cytocompatibility, Bone Cell Differentiation, and Macrophage Polarization. Nano Letters, 2020, 20, 4594-4602.	4.5	55
295	In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 47, 52-67.	5.6	55
296	Sulfur-regulated defect engineering for enhanced ultrasonic piezocatalytic therapy of bacteria-infected bone defects. Chemical Engineering Journal, 2022, 435, 134624.	6.6	55
297	In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material. Materials Science and Engineering C, 2013, 33, 3489-3497.	3.8	54
298	Phase Transformation Behavior and Mechanical Properties ofÂThermomechanically Treated K3XF Nickel-Titanium Instruments. Journal of Endodontics, 2013, 39, 919-923.	1.4	54
299	A review on biodegradable materials for cardiovascular stent application. Frontiers of Materials Science, 2016, 10, 238-259.	1.1	54
300	Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Materials, 2017, 2, 44-50.	8.6	54
301	Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. Corrosion Science, 2019, 157, 205-219.	3.0	54
302	Effects of Nd on microstructures and properties of extruded Mg–2Zn–0.46Y–xNd alloys for stent application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1673-1678.	1.7	53
303	Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance. Acta Biomaterialia, 2016, 45, 387-398.	4.1	53
304	Longâ€Term Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity. Advanced Healthcare Materials, 2019, 8, e1801465.	3.9	53
305	Eco-friendly Hybrids of Carbon Quantum Dots Modified MoS ₂ for Rapid Microbial Inactivation by Strengthened Photocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 534-542.	3.2	53
306	Rapid Sterilization by Photocatalytic Ag ₃ PO ₄ /α-Fe ₂ O ₃ Composites Using Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 2577-2585.	3.2	53

#	Article	IF	CITATIONS
307	Tannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritis. Acta Biomaterialia, 2021, 126, 119-131.	4.1	53
308	Microstructure and characteristics of the metal–ceramic composite (MgCaâ€HA/TCP) fabricated by liquid metal infiltration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 127-134.	1.6	52
309	Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment. Intermetallics, 2012, 27, 14-20.	1.8	52
310	Corrosion resistance and cytotoxicity of a MgF ₂ coating on biomedical Mg–1Ca alloy via vacuum evaporation deposition method. Surface and Interface Analysis, 2013, 45, 1217-1222.	0.8	52
311	Formation Mechanism, Corrosion Behavior, and Cytocompatibility of Microarc Oxidation Coating on Absorbable High-Purity Zinc. ACS Biomaterials Science and Engineering, 2019, 5, 487-497.	2.6	52
312	An UV to NIR-driven platform based on red phosphorus/graphene oxide film for rapid microbial inactivation. Chemical Engineering Journal, 2020, 383, 123088.	6.6	52
313	Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis. Bioactive Materials, 2022, 9, 428-445.	8.6	52
314	<i>In vitro</i> cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys. Biomedical Materials (Bristol), 2010, 5, 044102.	1.7	51
315	Degradable, absorbable or resorbable—what is the best grammatical modifier for an implant that is eventually absorbed by the body?. Science China Materials, 2017, 60, 377-391.	3.5	51
316	Photoelectric-Responsive Extracellular Matrix for Bone Engineering. ACS Nano, 2019, 13, 13581-13594.	7.3	51
317	Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment. Journal of Materials Science and Technology, 2019, 35, 6-18.	5.6	51
318	Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti–3Cu alloys. Journal of Alloys and Compounds, 2020, 812, 152142.	2.8	51
319	Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation. Acta Biomaterialia, 2020, 101, 152-167.	4.1	51
320	Photoelectrons Mediating Angiogenesis and Immunotherapy through Heterojunction Film for Noninvasive Disinfection. Advanced Science, 2020, 7, 2000023.	5.6	51
321	Research status of biodegradable metals designed for oral and maxillofacial applications: A review. Bioactive Materials, 2021, 6, 4186-4208.	8.6	51
322	Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioactive Materials, 2021, 6, 4607-4624.	8.6	51
323	Surface characteristics and corrosion resistance properties of TiNi shape memory alloy coated with Ta. Surface and Coatings Technology, 2004, 186, 346-352.	2.2	50
324	Surface characterization and mechanical property of TiN/Ti-coated NiTi alloy by PIIID. Surface and Coatings Technology, 2007, 201, 6869-6873.	2.2	50

#	Article	IF	CITATIONS
325	Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8324-8331.	2.6	50
326	<i>In vitro</i> study on Zrâ€based bulk metallic glasses as potential biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 34-46.	1.6	50
327	Metal–Organic Frameworks Incorporated Polycaprolactone Film for Enhanced Corrosion Resistance and Biocompatibility of Mg Alloy. ACS Sustainable Chemistry and Engineering, 2019, 7, 18114-18124.	3.2	50
328	Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel. Dental Materials, 2011, 27, 677-683.	1.6	49
329	Processing and properties of magnesium alloy micro-tubes for biodegradable vascular stents. Materials Science and Engineering C, 2018, 90, 504-513.	3.8	49
330	Biomimetic Ca, Sr/P-Doped Silk Fibroin Films on Mg-1Ca Alloy with Dramatic Corrosion Resistance and Osteogenic Activities. ACS Biomaterials Science and Engineering, 2018, 4, 3163-3176.	2.6	49
331	Investigation of Mg–Zn–Y–Nd alloy for potential application of biodegradable esophageal stent material. Bioactive Materials, 2020, 5, 1-8.	8.6	49
332	Overcoming Multidrugâ€Resistant MRSA Using Conventional Aminoglycoside Antibiotics. Advanced Science, 2020, 7, 1902070.	5.6	49
333	Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria. Nature Communications, 2022, 13, 2461.	5.8	49
334	Thermal degradation kinetics of g-HA/PLA composite. Thermochimica Acta, 2009, 493, 90-95.	1.2	48
335	Effect of Ce addition on the microstructure and damping properties of Cu–Al–Mn shape memory alloys. Journal of Alloys and Compounds, 2009, 480, 608-611.	2.8	48
336	Influence of annealing on NiTi shape memory alloy subjected to severe plastic deformation. Intermetallics, 2013, 32, 344-351.	1.8	48
337	InÂVitro Study on Mg–Sn–Mn Alloy as Biodegradable Metals. Journal of Materials Science and Technology, 2014, 30, 675-685.	5.6	48
338	In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Acta Biomaterialia, 2018, 72, 407-423.	4.1	48
339	Serum zinc levels and multiple health outcomes: Implications for zinc-based biomaterials. Bioactive Materials, 2020, 5, 410-422.	8.6	48
340	Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids. Electrochemistry Communications, 2009, 11, 2187-2190.	2.3	47
341	In vitro study on equal channel angular pressing AZ31 magnesium alloy with and without back pressure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1802-1806.	1.7	47
342	Rapid degradation of biomedical magnesium induced by zinc ion implantation. Materials Letters, 2011, 65, 661-663.	1.3	47

#	Article	IF	CITATIONS
343	Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies. Acta Biomaterialia, 2020, 105, 290-303.	4.1	47
344	The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds. Bioactive Materials, 2022, 13, 200-211.	8.6	47
345	In vitro corrosion and cytotoxicity on microcrystalline, nanocrystalline and amorphous NiTi alloy fabricated by high pressure torsion. Materials Letters, 2010, 64, 983-986.	1.3	46
346	In vitro and in vivo studies on biodegradable magnesium alloy. Progress in Natural Science: Materials International, 2014, 24, 466-471.	1.8	46
347	Degradation, hemolysis, and cytotoxicity of silane coatings on biodegradable magnesium alloy. Materials Letters, 2017, 193, 266-269.	1.3	46
348	Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy. Advanced Healthcare Materials, 2017, 6, 1601269.	3.9	46
349	Zn0.8Li0.1Sr—a biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures: In vitro and in vivo studies. Biomaterials, 2021, 275, 120905.	5.7	46
350	Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies. Acta Biomaterialia, 2022, 145, 403-415.	4.1	46
351	Effect of ball milling and post-annealing on magnetic properties of Ni49.8Mn28.5Ga21.7 alloy powders. Intermetallics, 2008, 16, 1279-1284.	1.8	45
352	Chemically anchoring of TiO2 coating on OH-terminated Mg3(PO3)2 surface and its influence on the in vitro degradation resistance of Mg–Zn–Ca alloy. Applied Surface Science, 2014, 308, 38-42.	3.1	45
353	Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, microstructure and mechanical properties. Materials and Design, 2019, 181, 107937.	3.3	45
354	Cell-free 3D wet-electrospun PCL/silk fibroin/Sr2+ scaffold promotes successful total meniscus regeneration in a rabbit model. Acta Biomaterialia, 2020, 113, 196-209.	4.1	45
355	High Magnesium Corrosion Rate has an Effect on Osteoclast and Mesenchymal Stem Cell Role During Bone Remodelling. Scientific Reports, 2018, 8, 10003.	1.6	45
356	Properties of Zr–ZrC–ZrC/DLC gradient films on TiNi alloy by the PIIID technique combined with PECVD. Surface and Coatings Technology, 2008, 202, 3011-3016.	2.2	44
357	Screening on binary Zr–1X (X=Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility. Acta Biomaterialia, 2013, 9, 9578-9587.	4.1	44
358	Novel pH-responsive tobramycin-embedded micelles in nanostructured multilayer-coatings of chitosan/heparin with efficient and sustained antibacterial properties. Materials Science and Engineering C, 2018, 90, 693-705.	3.8	44
359	<p>Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/l²-catenin signaling pathway</p> . International Journal of Nanomedicine, 2019, Volume 14, 6151-6163.	3.3	44
360	Ag2S decorated nanocubes with enhanced near-infrared photothermal and photodynamic properties for rapid sterilization. Colloids and Interface Science Communications, 2019, 33, 100201.	2.0	44

Yf Zheng

#	Article	IF	CITATIONS
361	In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis. Acta Biomaterialia, 2020, 116, 223-245.	4.1	44
362	Effect of extrusion process on the mechanical and in vitro degradation performance of a biomedical Mg-Zn-Y-Nd alloy. Bioactive Materials, 2020, 5, 219-227.	8.6	44
363	Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds. Chemical Engineering Journal, 2021, 414, 128805.	6.6	44
364	Three-dimensional-printed individualized porous implants: A new "implant-bone―interface fusion concept for large bone defect treatment. Bioactive Materials, 2021, 6, 3659-3670.	8.6	44
365	Microstructure of stress-induced martensite in a Ti–Ni–Hf high temperature shape memory alloy. Scripta Materialia, 2001, 45, 1177-1182.	2.6	43
366	<i>In vitro</i> and <i>in vivo</i> studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1694-1707.	2.1	43
367	Corrosion resistance and drug release profile of gentamicin-loaded polyelectrolyte multilayers on magnesium alloys: Effects of heat treatment. Journal of Colloid and Interface Science, 2019, 547, 309-317.	5.0	43
368	Effects of Hf content and immersion time on electrochemical behavior of biomedical Tiâ€⊋2Nbâ€ <i>x</i> Hf alloys in 0.9% NaCl solution. Materials and Corrosion - Werkstoffe Und Korrosion, 2009, 60, 330-335.	0.8	42
369	Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating. Applied Surface Science, 2011, 257, 5913-5918.	3.1	42
370	ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use. Journal of Endodontics, 2015, 41, 937-942.	1.4	42
371	Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomaterialia, 2016, 44, 323-331.	4.1	42
372	In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique. Colloids and Surfaces B: Biointerfaces, 2016, 142, 20-29.	2.5	42
373	Characterization and cytocompatibility of polydopamine on MAOâ€HA coating supported on Mgâ€Zn a alloy. Surface and Interface Analysis, 2017, 49, 1115-1123.	0.8	42
374	Mg-Zn-Y-Nd coated with citric acid and dopamine by layer-by-layer self-assembly to improve surface biocompatibility. Science China Technological Sciences, 2018, 61, 1228-1237.	2.0	42
375	Constructing Multilayer Silk Protein/Nanosilver Biofunctionalized Hierarchically Structured 3D Printed Ti6Al4 V Scaffold for Repair of Infective Bone Defects. ACS Biomaterials Science and Engineering, 2019, 5, 244-261.	2.6	42
376	Corrosion fatigue of the extruded Mg–Zn–Y–Nd alloy in simulated body fluid. Journal of Magnesium and Alloys, 2020, 8, 231-240.	5.5	42
377	Corrosion inhibition of Schiff bases for Mg-Zn-Y-Nd alloy in normal saline: Experimental and theoretical investigations. Corrosion Science, 2021, 184, 109268.	3.0	42
378	Simultaneously enhancing the photocatalytic and photothermal effect of NH2-MIL-125-GO-Pt ternary heterojunction for rapid therapy of bacteria-infected wounds. Bioactive Materials, 2022, 18, 421-432.	8.6	42

#	Article	IF	CITATIONS
379	Multi-pass spinning of thin-walled tubular part with longitudinal inner ribs. Transactions of Nonferrous Metals Society of China, 2009, 19, 215-221.	1.7	41
380	A novel amperometric hydrogen peroxide biosensor based on immobilized Hb in Pluronic P123-nanographene platelets composite. Colloids and Surfaces B: Biointerfaces, 2011, 84, 427-432.	2.5	41
381	In vitro corrosion of Mg–1.21Li–1.12Ca–1Y alloy. Progress in Natural Science: Materials International, 2014, 24, 492-499.	1.8	41
382	Accelerating degradation rate of pure iron by zinc ion implantation. International Journal of Energy Production and Management, 2016, 3, 205-215.	1.9	41
383	Zn2+-assisted photothermal therapy for rapid bacteria-killing using biodegradable humic acid encapsulated MOFs. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110781.	2.5	41
384	Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139082.	2.6	41
385	Tantalum coated NiTi alloy by PIIID for biomedical application. Surface and Coatings Technology, 2013, 228, S2-S6.	2.2	40
386	Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application. Scientific Reports, 2016, 6, 37475.	1.6	40
387	Sr/ZnO doped titania nanotube array: An effective surface system with excellent osteoinductivity and self-antibacterial activity. Materials and Design, 2017, 130, 403-412.	3.3	40
388	Diameter-dependent in vitro performance of biodegradable pure zinc wires for suture application. Journal of Materials Science and Technology, 2019, 35, 1662-1670.	5.6	40
389	A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate osseointegration. Chemical Engineering Journal, 2021, 403, 126323.	6.6	40
390	Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioactive Materials, 2021, 6, 3999-4013.	8.6	40
391	<i>In vitro</i> and <i>in vivo</i> evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. Biomedical Materials (Bristol), 2011, 6, 025001.	1.7	39
392	Thermal cycling stability of ultrafine-grained TiNi shape memory alloys processed by equal channel angular pressing. Scripta Materialia, 2012, 67, 1-4.	2.6	39
393	Microstructure and characteristics of interpenetrating β-TCP/Mg–Zn–Mn composite fabricated by suction casting. Materials & Design, 2014, 54, 995-1001.	5.1	39
394	Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent. , 2015, 103, 764-776.		39
395	Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy. Bioactive Materials, 2017, 2, 63-70.	8.6	39
396	In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application. Science China Materials, 2019, 62, 256-272.	3.5	39

#	Article	IF	CITATIONS
397	Strategic Advances in Spatiotemporal Control of Bioinspired Phenolic Chemistries in Materials Science. Advanced Functional Materials, 2021, 31, 2008821.	7.8	39
398	Practical strategy to construct anti-osteosarcoma bone substitutes by loading cisplatin into 3D-printed titanium alloy implants using a thermosensitive hydrogel. Bioactive Materials, 2021, 6, 4542-4557.	8.6	39
399	Microstructural development inside the stress induced martensite variant in a Ti–Ni–Nb shape memory alloy. Acta Materialia, 2000, 48, 1409-1425.	3.8	38
400	Corrosion and ion release behavior of ultra-fine grained bulk pure copper fabricated by ECAP in Hanks solution as potential biomaterial for contraception. Materials Letters, 2010, 64, 524-527.	1.3	38
401	Composite coating prepared by micro-arc oxidation followed by sol–gel process and in vitro degradation properties. Applied Surface Science, 2012, 258, 2939-2943.	3.1	38
402	A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids and Surfaces B: Biointerfaces, 2014, 118, 77-82.	2.5	38
403	Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn. Scientific Reports, 2016, 6, 21736.	1.6	38
404	Microstructure, corrosion resistance and formation mechanism of alumina micro-arc oxidation coatings on sintered NdFeB permanent magnets. Surface and Coatings Technology, 2017, 309, 621-627.	2.2	38
405	Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: Microstructure, mechanical properties, corrosion behavior and antibacterial activities. Bioactive Materials, 2018, 3, 225-235.	8.6	38
406	In vitro degradation and biocompatibility of Mg-Li-Ca alloys—the influence of Li content. Science China Materials, 2018, 61, 607-618.	3.5	38
407	Surface modification of the biodegradable cardiovascular stent material Mg–Zn–Y–Nd alloy via conjugating REDV peptide for better endothelialization. Journal of Materials Research, 2018, 33, 4123-4133.	1.2	38
408	Unraveling the osteogenesis of magnesium by the activity of osteoblasts <i>in vitro</i> . Journal of Materials Chemistry B, 2018, 6, 6615-6621.	2.9	38
409	A surface-engineered multifunctional TiO2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomaterialia, 2019, 99, 495-513.	4.1	38
410	Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank's solution. Corrosion Science, 2019, 161, 108185.	3.0	38
411	Rapid bacterial elimination achieved by sonodynamic Au@Cu ₂ O hybrid nanocubes. Nanoscale, 2021, 13, 15699-15710.	2.8	38
412	Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation. Bioactive Materials, 2022, 16, 301-319.	8.6	38
413	Structural transition and atomic ordering of Ni49.8Mn28.5Ga21.7 ferromagnetic shape memory alloy powders prepared by ball milling. Materials Letters, 2008, 62, 2851-2854.	1.3	37
414	Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application. Acta Biomaterialia, 2012, 8, 886-896.	4.1	37

#	Article	IF	CITATIONS
415	Microstructure, mechanical property, corrosion behavior, and <i>in vitro</i> biocompatibility of Zr–Mo alloys. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 237-246.	1.6	37
416	Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting. Materials Science and Engineering C, 2013, 33, 4266-4273.	3.8	37
417	Microstructure and room temperature mechanical properties of NiAl–Cr(Mo)–(Hf, Dy) hypoeutectic alloy prepared by injection casting. Transactions of Nonferrous Metals Society of China, 2013, 23, 983-990.	1.7	37
418	A Comparative inÂvitro Study on Biomedical Zr–2.5X (XÂ=ÂNb, Sn) Alloys. Journal of Materials Science and Technology, 2014, 30, 299-306.	5.6	37
419	Microstructure and martensitic transformation of an ultrafine-grained TiNiNb shape memory alloy processed by equal channel angular pressing. Intermetallics, 2014, 49, 81-86.	1.8	37
420	Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. Materials Science and Engineering C, 2017, 76, 50-58.	3.8	37
421	Effects of flow velocity and different corrosion media on the in vitro bio-corrosion behaviors of AZ31 magnesium alloy. Materials Chemistry and Physics, 2018, 217, 300-307.	2.0	37
422	Enzyme and PH responsive 5-flurouracil (5-FU) loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. European Polymer Journal, 2019, 118, 64-70.	2.6	37
423	Pyrite (FeS2) films prepared via sol–gel hydrothermal method combined with electrophoretic deposition (EPD). Materials Research Bulletin, 2004, 39, 1861-1868.	2.7	36
424	A novel amperometric hydrogen peroxide biosensor based on electrospun Hb–collagen composite. Colloids and Surfaces B: Biointerfaces, 2011, 86, 140-145.	2.5	36
425	Bio-inspired self-cleaning PAAS hydrogel released coating for marine antifouling. Journal of Colloid and Interface Science, 2014, 421, 178-183.	5.0	36
426	Uniform and accelerated degradation of pure iron patterned by Pt disc arrays. Scientific Reports, 2016, 6, 23627.	1.6	36
427	Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening. Nature Communications, 2017, 8, 2000.	5.8	36
428	Effects of Sr addition on microstructure, mechanical and corrosion properties of biodegradable Mg–Zn–Ca alloy. Journal of Alloys and Compounds, 2020, 838, 155611.	2.8	36
429	Hierarchical macro-microporous WPU-ECM scaffolds combined with Microfracture Promote in Situ Articular Cartilage Regeneration in Rabbits. Bioactive Materials, 2021, 6, 1932-1944.	8.6	36
430	High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis. Biomaterials, 2022, 287, 121663.	5.7	36
431	The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy. Applied Surface Science, 2019, 484, 511-523.	3.1	35
432	<i>In vitro</i> and <i>in vivo</i> studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomaterials Science, 2020, 8, 5071-5087.	2.6	35

#	Article	IF	CITATIONS
433	The corrosion behavior and hemocompatibility of TiNi alloys coated with DLC by plasma based ion implantation. Surface and Coatings Technology, 2006, 200, 4543-4548.	2.2	34
434	<i>IN VITRO</i> AND <i>IN VIVO</i> BIOCOMPATIBILITY STUDIES OF ZNO NANOPARTICLES. International Journal of Modern Physics B, 2009, 23, 1566-1571.	1.0	34
435	The influence of lactic on the properties of Poly (glycerol–sebacate–lactic acid). Materials Science and Engineering C, 2009, 29, 178-182.	3.8	34
436	Development of CaZn based glassy alloys as potential biodegradable bone graft substitute. Journal of Non-Crystalline Solids, 2011, 357, 3830-3840.	1.5	34
437	Suppression of Î ³ phase in Ni38Co12Mn41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties. Intermetallics, 2013, 36, 81-85.	1.8	34
438	Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg–Zn–Y–Nd–Zr alloy for stent applications. Journal of Materials Science and Technology, 2019, 35, 1211-1217.	5.6	34
439	Nanoporous Nickel–Molybdenum Oxide with an Oxygen Vacancy for Electrocatalytic Nitrogen Fixation under Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 30722-30730.	4.0	34
440	Carbon nanotube–hydroxyapatite–hemoglobin nanocomposites with high bioelectrocatalytic activity. Bioelectrochemistry, 2010, 78, 124-129.	2.4	33
441	Correlation between corrosion performance and surface wettability in ZrTiCuNiBe bulk metallic glasses. Applied Physics Letters, 2010, 96, .	1.5	33
442	Phase transition of Ni–Mn–Ga alloy powders prepared by vibration ball milling. Journal of Alloys and Compounds, 2011, 509, 4563-4568.	2.8	33
443	Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface. Applied Surface Science, 2011, 257, 9086-9093.	3.1	33
444	Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment. Progress in Natural Science: Materials International, 2014, 24, 539-546.	1.8	33
445	Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti–Bi alloys developed for dental applications. Acta Biomaterialia, 2015, 15, 254-265.	4.1	33
446	M5B3 Boride at the Grain Boundary of a Nickel-based Superalloy. Journal of Materials Science and Technology, 2016, 32, 265-270.	5.6	33
447	Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant <i>Staphylococcus aureus</i> bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model. Biomaterials Science, 2020, 8, 3106-3115.	2.6	33
448	Enhanced Nearâ€Infrared Photocatalytic Eradication of MRSA Biofilms and Osseointegration Using Oxide Perovskiteâ€Based P–N Heterojunction. Advanced Science, 2021, 8, e2002211.	5.6	33
449	Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications. Materials Science and Engineering C, 2021, 129, 112410.	3.8	33
450	Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models. Nature Communications, 2022, 13, 535.	5.8	33

#	Article	IF	CITATIONS
451	Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys. Journal of Magnesium and Alloys, 2022, 10, 670-688.	5.5	33
452	HREM Study on the Intervariant Structure of Ti-Ni-Hf B19′ Martensite. Scripta Materialia, 1998, 38, 1249-1253.	2.6	32
453	Effect of Fe addition on transformation temperatures and hardness of NiMnGa magnetic shape memory alloys. Journal of Materials Science, 2005, 40, 219-221.	1.7	32
454	Deposition of TiN coatings on shape memory NiTi alloy by plasma immersion ion implantation and deposition. Thin Solid Films, 2006, 515, 1358-1363.	0.8	32
455	<i>In Vitro</i> Biocompatibility Study of Nano TiO ₂ Materials. Advanced Materials Research, 0, 47-50, 1438-1441.	0.3	32
456	Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys. Journal of Materials Engineering and Performance, 2011, 20, 762-766.	1.2	32
457	Surface Characterization and Cell Response of Binary Ti-Ag Alloys with CP Ti as Material Control. Journal of Materials Science and Technology, 2012, 28, 779-784.	5.6	32
458	ProFile Vortex Instruments after Clinical Use: A Metallurgical Properties Study. Journal of Endodontics, 2012, 38, 1613-1617.	1.4	32
459	The microstructure and shape memory effect of Ti–16Âat.%Nb alloy. Materials Letters, 2008, 62, 269-272.	1.3	31
460	Corrosion behavior of Ti–5Ag alloy with and without thermal oxidation in artificial saliva solution. Dental Materials, 2011, 27, 214-220.	1.6	31
461	Plasma enhanced chemical vapor deposited silicon coatings on Mg alloy for biomedical application. Surface and Coatings Technology, 2013, 228, S262-S265.	2.2	31
462	Triple-Bioinspired Burying/Crosslinking Interfacial Coassembly Strategy for Layer-by-Layer Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications. ACS Applied Materials & Interfaces, 2019, 11, 4447-4469.	4.0	31
463	Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light. Journal of Materials Science and Technology, 2021, 67, 70-79.	5.6	31
464	PDLLA-Zn-nitrided Fe bioresorbable scaffold with 53-μm-thick metallic struts and tunable multistage biodegradation function. Science Advances, 2021, 7, .	4.7	31
465	Biomimicking Bone–Implant Interface Facilitates the Bioadaption of a New Degradable Magnesium Alloy to the Bone Tissue Microenvironment. Advanced Science, 2021, 8, e2102035.	5.6	31
466	Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis. Chemical Engineering Journal, 2022, 431, 133279.	6.6	31
467	Oxygen Vacanciesâ€Rich Heterojunction of Ti ₃ C ₂ /BiOBr for Photoâ€Excited Antibacterial Textiles. Small, 2022, 18, e2104448.	5.2	31
468	Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioactive Materials, 2023, 19, 12-23.	8.6	31

#	Article	IF	CITATIONS
469	Effect of low dc magnetic field on the premartensitic phase transition temperature of ferromagnetic Ni2MnGa single crystals. Journal of Physics Condensed Matter, 2001, 13, 2607-2613.	0.7	30
470	Magnetic properties and structural phase transformations of NiMnGa alloys. IEEE Transactions on Magnetics, 2001, 37, 2715-2717.	1.2	30
471	Effect of sterilization process on surface characteristics and biocompatibility of pure Mg and MgCa alloys. Materials Science and Engineering C, 2013, 33, 4144-4154.	3.8	30
472	Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. Materials Science and Engineering C, 2015, 48, 679-687.	3.8	30
473	Magnesium-calcium/hydroxyapatite (Mg-Ca/HA) composites with enhanced bone differentiation properties for orthopedic applications. Materials Letters, 2016, 172, 193-197.	1.3	30
474	A near infrared-activated photocatalyst based on elemental phosphorus by chemical vapor deposition. Applied Catalysis B: Environmental, 2019, 258, 117980.	10.8	30
475	Photo-controlled degradation of PLGA/Ti3C2 hybrid coating on Mg-Sr alloy using near infrared light. Bioactive Materials, 2021, 6, 568-578.	8.6	30
476	Designing HA/PEI nanoparticle composite coating on biodegradable Mg–Zn–Y-Nd alloy to direct cardiovascular cells fate. Smart Materials in Medicine, 2021, 2, 124-133.	3.7	30
477	High-resolution electron microscopy study on the substructure of Ti–Ni–Hf B19′ Martensite. Materials Letters, 1998, 36, 142-147.	1.3	29
478	Enhanced corrosion resistance of Zr coating on biomedical TiNi alloy prepared by plasma immersion ion implantation and deposition. Applied Surface Science, 2008, 255, 512-514.	3.1	29
479	Nanocomposites of poly(l-lactide) and surface modified magnesia nanoparticles: Fabrication, mechanical property and biodegradability. Journal of Physics and Chemistry of Solids, 2011, 72, 111-116.	1.9	29
480	Osteoblast response on Ti―and Zrâ€based bulk metallic glass surfaces after sand blasting modification. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1721-1728.	1.6	29
481	Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg-Zn-Mn composite fabricated by suction casting. Materials Science and Engineering C, 2013, 33, 618-625.	3.8	29
482	Ti–Ga binary alloys developed as potential dental materials. Materials Science and Engineering C, 2014, 34, 474-483.	3.8	29
483	Improved cytocompatibility of Mg-1Ca alloy modified by Zn ion implantation and deposition. Materials Letters, 2017, 205, 87-89.	1.3	29
484	Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti6Al4V for improved hemocompatibility, osteogenic and anti-infection potencies. Science China Materials, 2018, 61, 579-592.	3.5	29
485	3D-printed cell-free PCL–MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration. Bioactive Materials, 2021, 6, 3620-3633.	8.6	29
486	A robust calcium carbonate (CaCO3) coating on biomedical MgZnCa alloy for promising corrosion protection. Corrosion Science, 2022, 198, 110124.	3.0	29

#	Article	IF	CITATIONS
487	Tuning the surface potential to reprogram immune microenvironment for bone regeneration. Biomaterials, 2022, 282, 121408.	5.7	29
488	A Study of ZrN/Zr Coatings Deposited on NiTi Alloy by PIIID Technique. IEEE Transactions on Plasma Science, 2006, 34, 1105-1108.	0.6	28
489	Surface characterization and electrochemical studies of biomedical NiTi alloy coated with TiN by PIIID. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1146-1149.	2.6	28
490	Bending properties of epoxy resin matrix composites filled with Ni–Mn–Ga ferromagnetic shape memory alloy powders. Materials Letters, 2009, 63, 1729-1732.	1.3	28
491	Immobilizing natural macromolecule on PLGA electrospun nanofiber with surface entrapment and entrapment-graft techniques. Colloids and Surfaces B: Biointerfaces, 2012, 94, 44-50.	2.5	28
492	In vitro investigation of novel Ni free Zr-based bulk metallic glasses as potential biomaterials. Materials Letters, 2012, 75, 74-76.	1.3	28
493	Development and properties of Ti–In binary alloys as dental biomaterials. Materials Science and Engineering C, 2013, 33, 1601-1606.	3.8	28
494	Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys. Intermetallics, 2016, 72, 30-35.	1.8	28
495	Microstructural and property evolution of Ti6Al4V powders with the number of usage in additive manufacturing by electron beam melting. Materials Letters, 2018, 221, 111-114.	1.3	28
496	Construction of perfluorohexane/IR780@liposome coating on Ti for rapid bacteria killing under permeable near infrared light. Biomaterials Science, 2018, 6, 2460-2471.	2.6	28
497	Improved osseointegration with rhBMP-2 intraoperatively loaded in a specifically designed 3D-printed porous Ti6Al4V vertebral implant. Biomaterials Science, 2020, 8, 1279-1289.	2.6	28
498	Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent. Journal of Materials Science and Technology, 2020, 46, 114-126.	5.6	28
499	Effects of ambient pressure on silicon nanowire growth. Chemical Physics Letters, 2001, 334, 229-232.	1.2	27
500	Integrated Computational Materials Engineering (ICME) Approach to Design of Novel Microstructures for Ti-Alloys. Jom, 2014, 66, 1287-1298.	0.9	27
501	The microstructure and corrosion resistance of biological Mg–Zn–Ca alloy processed by high-pressure torsion and subsequently annealing. Journal of Materials Research, 2017, 32, 1061-1072.	1.2	27
502	In vitro and in vivo studies on as-extruded Mg- 5.25wt.%Zn-0.6wt.%Ca alloy as biodegradable metal. Science China Materials, 2018, 61, 619-628.	3.5	27
503	Microstructure and texture evolution of fine-grained Mg-Zn-Y-Nd alloy micro-tubes for biodegradable vascular stents processed by hot extrusion and rapid cooling. Journal of Magnesium and Alloys, 2020, 8, 873-882.	5.5	27
504	Stepwise 3D-spatio-temporal magnesium cationic niche: Nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification. Bioactive Materials, 2021, 6, 503-519.	8.6	27

#	Article	IF	CITATIONS
505	In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis. Acta Biomaterialia, 2021, 121, 713-723.	4.1	27
506	Corrosion behavior of Mg wires for ureteral stent in artificial urine solution. Corrosion Science, 2021, 189, 109567.	3.0	27
507	Cu nanoparticle-decorated two-dimensional carbon nanosheets with superior photothermal conversion efficiency of 65 % for highly efficient disinfection under near-infrared light. Journal of Materials Science and Technology, 2021, 87, 83-94.	5.6	27
508	The highly effective therapy of ovarian cancer by Bismuth-doped oxygen-deficient BaTiO3 with enhanced sono-piezocatalytic effects. Chemical Engineering Journal, 2022, 442, 136380.	6.6	27
509	The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use. Dental Materials, 2008, 24, 1207-1211.	1.6	26
510	Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg–3Ca alloy ribbons as a biodegradable material. Biomedical Materials (Bristol), 2010, 5, 035013.	1.7	26
511	In vitro corrosion and biocompatibility of phosphating modified WE43 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 996-1001.	1.7	26
512	Study on the in vitro degradation behavior of pure Mg and WE43 in human bile for 60 days for future usage in biliary. Materials Letters, 2016, 179, 100-103.	1.3	26
513	Hierarchical Micropore/Nanorod Apatite Hybrids In-Situ Grown from 3-D Printed Macroporous Ti6Al4V Implants with Improved Bioactivity and Osseointegration. Journal of Materials Science and Technology, 2017, 33, 179-186.	5.6	26
514	Influence of Zn Content on Microstructure and Tensile Properties of Mg–Zn–Y–Nd Alloy. Acta Metallurgica Sinica (English Letters), 2018, 31, 351-361.	1.5	26
515	Sulfur Contents in Sulfonated Hyaluronic Acid Direct the Cardiovascular Cells Fate. ACS Applied Materials & Interfaces, 2020, 12, 46827-46836.	4.0	26
516	Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals. Acta Biomaterialia, 2022, 142, 388-401.	4.1	26
517	Surface characterization and immersion tests of TiNi alloy coated with Ta. Surface and Coatings Technology, 2005, 190, 428-433.	2.2	25
518	Time effect of martensitic transformation in Ni43Co7Mn41Sn9. Intermetallics, 2010, 18, 188-192.	1.8	25
519	Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis. Transactions of Nonferrous Metals Society of China, 2012, 22, 489-495.	1.7	25
520	Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility. Scientific Reports, 2016, 6, 24414.	1.6	25
521	Accelerating Corrosion of Pure Magnesium Co-implanted with Titanium in Vivo. Scientific Reports, 2017, 7, 41924.	1.6	25
522	In vitro degradation and biocompatibility evaluation of typical biodegradable metals (Mg/Zn/Fe) for the application of tracheobronchial stenosis. Bioactive Materials, 2019, 4, 114-119.	8.6	25

#	Article	IF	CITATIONS
523	Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. Chemical Engineering Journal, 2021, 417, 129317.	6.6	25
524	A mathematical model for describing the mechanical behaviour of root canal instruments. International Endodontic Journal, 2011, 44, 72-76.	2.3	24
525	A comprehensive biological evaluation of ceramic nanoparticles as wear debris. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 975-982.	1.7	24
526	Superelasticity and its stability of an ultrafine-grained Ti49.2Ni50.8 shape memory alloy processed by equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 587, 61-64.	2.6	24
527	In vivo and in vitro evaluation of effects of Mg-6Zn alloy on apoptosis of common bile duct epithelial cell. BioMetals, 2014, 27, 1217-1230.	1.8	24
528	Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Metals, 2019, 38, 588-600.	3.6	24
529	An innovative strategy to treat large metaphyseal segmental femoral bone defect using customized design and 3D printed micro-porous prosthesis: a prospective clinical study. Journal of Materials Science: Materials in Medicine, 2020, 31, 66.	1.7	24
530	In vitro and in vivo studies on pure Mg, Mg–1Ca and Mg–2Sr alloys processed by equal channel angular pressing. Nano Materials Science, 2020, 2, 96-108.	3.9	24
531	2D Molybdenum Sulfideâ€Based Materials for Photoâ€Excited Antibacterial Application. Advanced Healthcare Materials, 2022, 11, e2200360.	3.9	24
532	Strain states and unique properties in cold-rolled TiNi shape memory alloys. Acta Materialia, 2022, 231, 117890.	3.8	24
533	Magnetic-field-induced strains and magnetic properties of Heusler alloy Ni52Mn23Ga25. Journal of Applied Physics, 2000, 87, 6292-6294.	1.1	23
534	Carbon monoxide-assisted growth of carbon nanotubes. Chemical Physics Letters, 2001, 342, 259-264.	1.2	23
535	The characterization of fluorocarbon films on NiTi alloy by magnetron sputtering. Applied Surface Science, 2008, 255, 432-434.	3.1	23
536	Effect of Sn addition on the corrosion behavior of Tiâ€īa alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 259-263.	0.8	23
537	In vitro corrosion behavior and cellular response of thermally oxidized Zr–3Sn alloy. Applied Surface Science, 2013, 265, 878-888.	3.1	23
538	Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg–1Ca alloy treated with MEVVA. Colloids and Surfaces B: Biointerfaces, 2015, 133, 99-107.	2.5	23
539	Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications. Frontiers of Materials Science, 2016, 10, 270-280.	1.1	23
540	Construction of Self-defensive Antibacterial and Osteogenic AgNPs/Gentamicin Coatings with Chitosan as Nanovalves for Controlled release. Scientific Reports, 2018, 8, 13432.	1.6	23

#	Article	IF	CITATIONS
541	Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance. Journal of Materials Science and Technology, 2019, 35, 2156-2162.	5.6	23
542	Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing. Journal of Materials Science and Technology, 2019, 35, 1393-1402.	5.6	23
543	In vitro and in vivo studies to evaluate the feasibility of Zn-0.1Li and Zn-0.8Mg application in the uterine cavity microenvironment compared to pure zinc. Acta Biomaterialia, 2021, 123, 393-406.	4.1	23
544	Bioadaptability of biomaterials: Aiming at precision medicine. Matter, 2021, 4, 2648-2650.	5.0	23
545	Sol-gel coating loaded with inhibitor on ZE21B Mg alloy for improving corrosion resistance and endothelialization aiming at potential cardiovascular application. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111993.	2.5	23
546	Effect of Pt film thickness on PtSi formation and film surface morphology. Surface and Coatings Technology, 2005, 198, 329-334.	2.2	22
547	Modification of biomedical NiTi shape memory alloy by TiC/Ti films using PIIID. Surface and Coatings Technology, 2007, 201, 6857-6860.	2.2	22
548	Shape Memory Effect and Superelastic Property of a Novel Ti-3Zr-2Sn-3Mo-15Nb Alloy. Rare Metal Materials and Engineering, 2008, 37, 1-5.	0.8	22
549	<i>In Vivo</i> Biocompatibility Studies of Nano TiO ₂ Materials. Advanced Materials Research, 0, 79-82, 389-392.	0.3	22
550	Properties of Porous TiNbZr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing. Journal of Materials Engineering and Performance, 2011, 20, 783-786.	1.2	22
551	Study on bioâ€corrosion and cytotoxicity of a srâ€based bulk metallic glass as potential biodegradable metal. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 368-377.	1.6	22
552	Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2586-2601.	2.1	22
553	Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Metals, 2014, 33, 511-515.	3.6	22
554	One-Step Electrodeposition of Self-Assembled Colloidal Particles: A Novel Strategy for Biomedical Coating. Langmuir, 2014, 30, 11002-11010.	1.6	22
555	Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study. Applied Surface Science, 2017, 409, 149-155.	3.1	22
556	Creep properties of biodegradable Zn-0.1Li alloy at human body temperature: implications for its durability as stents. Materials Research Letters, 2019, 7, 347-353.	4.1	22
557	A tailored positively-charged hydrophobic surface reduces the risk of implant associated infections. Acta Biomaterialia, 2020, 114, 421-430.	4.1	22
558	Biodegradable metal-derived magnesium and sodium enhances bone regeneration by angiogenesis aided osteogenesis and regulated biological apatite formation. Chemical Engineering Journal, 2021, 410, 127616.	6.6	22

#	Article	IF	CITATIONS
559	Investigating the stress corrosion cracking of a biodegradable Zn-0.8Âwt%Li alloy in simulated body fluid. Bioactive Materials, 2021, 6, 1468-1478.	8.6	22
560	Preparation of photo-crosslinked aliphatic polycarbonate coatings with predictable degradation behavior on magnesium-alloy stents by electrophoretic deposition. Chemical Engineering Journal, 2022, 427, 131596.	6.6	22
561	Conjugating heparin, Arg–Glu–Asp–Val peptide, and anti-CD34 to the silanic Mg–Zn–Y–Nd alloy for better endothelialization. Journal of Biomaterials Applications, 2020, 35, 158-168.	1.2	22
562	Electrophoretic deposited boron nitride nanosheets-containing chitosan-based coating on Mg alloy for better corrosion resistance, biocompatibility and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128303.	2.3	22
563	Two-way shape memory effect induced by martensite deformation and stabilization of martensite in Ti36Ni49Hf15 high temperature shape memory alloy. Materials Letters, 2003, 57, 4206-4211.	1.3	21
564	Cyclic ageing of Ti–50.8at.% Ni alloy. Intermetallics, 2008, 16, 394-398.	1.8	21
565	Surface modification of Ca60Mg15Zn25 bulk metallic glass for slowing down its biodegradation rate in water solution. Materials Letters, 2010, 64, 1462-1464.	1.3	21
566	Research activities of biomedical magnesium alloys in China. Jom, 2011, 63, 105-108.	0.9	21
567	Corrosion behavior of TiO2 films on Mg–Zn alloy in simulated body fluid. Applied Surface Science, 2011, 257, 4464-4467.	3.1	21
568	Magnetic field induced strain and damping behavior of Ni–Mn–Ga particles/epoxy resin composite. Journal of Alloys and Compounds, 2014, 604, 137-141.	2.8	21
569	TiNi shape memory alloy coated with tungsten: a novel approach for biomedical applications. Journal of Materials Science: Materials in Medicine, 2014, 25, 1249-1255.	1.7	21
570	Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets. Journal of Magnetism and Magnetic Materials, 2017, 426, 361-368.	1.0	21
571	A numerical corrosion-fatigue model for biodegradable Mg alloy stents. Acta Biomaterialia, 2019, 97, 671-680.	4.1	21
572	Based on the synergistic effect of Mg ²⁺ and antibacterial peptides to improve the corrosion resistance, antibacterial ability and osteogenic activity of magnesium-based degradable metals. Biomaterials Science, 2021, 9, 807-825.	2.6	21
573	In vitro corrosion properties of HTHEed Mg-Zn-Y-Nd alloy microtubes for stent applications: Influence of second phase particles and crystal orientation. Journal of Magnesium and Alloys, 2022, 10, 1286-1295.	5.5	21
574	A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. Biomaterials Science, 2021, 9, 8202-8220.	2.6	21
575	Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioactive Materials, 2022, 11, 140-153.	8.6	21
576	The structure and mobility of the intervariant boundaries in 18R martensite in a Cu–Zn–Al alloy. Acta Materialia, 1999, 47, 2125-2141.	3.8	20

#	Article	IF	CITATIONS
577	Effect of internal stress and bias field on the transformation strain of the Heusler alloy Ni52Mn24.4Ga23.6. Journal of Physics Condensed Matter, 2000, 12, 6287-6293.	0.7	20
578	Electrochemical corrosion behaviour of Ti44Ni47Nb9 alloy in simulated body fluids. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 504-508.	2.6	20
579	Calcification capacity of porous pHEMA–TiO2 composite hydrogels. Journal of Materials Science: Materials in Medicine, 2009, 20, 2215-2222.	1.7	20
580	Transformation hysteresis and shape memory effect of an ultrafine-grained TiNiNb shape memory alloy. Intermetallics, 2014, 54, 133-135.	1.8	20
581	Controlled release and corrosion protection by self-assembled colloidal particles electrodeposited onto magnesium alloys. Journal of Materials Chemistry B, 2015, 3, 1667-1676.	2.9	20
582	Investigation on the in vitro cytocompatibility of Mg-Zn-Y-Nd-Zr alloys as degradable orthopaedic implant materials. Journal of Materials Science: Materials in Medicine, 2018, 29, 44.	1.7	20
583	Material-herbology: An effective and safe strategy to eradicate lethal viral-bacterial pneumonia. Matter, 2021, 4, 3030-3048.	5.0	20
584	Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process. Materials Letters, 2021, 301, 130283.	1.3	20
585	A biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation. Acta Biomaterialia, 2022, 142, 402-412.	4.1	20
586	Adsorption and electrochemistry of hemoglobin on Chi-carbon nanotubes composite film. Applied Surface Science, 2008, 255, 571-573.	3.1	19
587	A study of TaxC1â^'x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering. Applied Surface Science, 2010, 257, 696-703.	3.1	19
588	Preparation and characterization of TaCxN1â^'x coatings on biomedical 316L stainless steel. Surface and Coatings Technology, 2010, 204, 2519-2526.	2.2	19
589	Development of Tiâ€Agâ€Fe ternary titanium alloy for dental application. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 185-196.	1.6	19
590	A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles. Materials Letters, 2015, 157, 143-146.	1.3	19
591	Multiple-stage transformation behavior of Ti 49.2 Ni 50.8 alloy with different initial microstructure processed by equal channel angular pressing. Intermetallics, 2017, 85, 163-169.	1.8	19
592	Rapamycin-loaded nanoporous α-Fe ₂ O ₃ as an endothelial favorable and thromboresistant coating for biodegradable drug-eluting Fe stent applications. Journal of Materials Chemistry B, 2017, 5, 1182-1194.	2.9	19
593	Electrochemical polymerization of dopamine with/without subsequent PLLA coating on Mg-Zn-Y-Nd alloy. Materials Letters, 2019, 252, 202-206.	1.3	19
594	Exploring the effect of amino acid and glucose on the biodegradation of pure Zn. Corrosion Science, 2020, 170, 108661.	3.0	19

#	Article	IF	CITATIONS
595	Preparation of functional coating on magnesium alloy with hydrophilic polymers and bioactive peptides for improved corrosion resistance and biocompatibility. Journal of Magnesium and Alloys, 2022, 10, 1957-1971.	5.5	19
596	<i>In Vitro</i> Structural Changes of Nano-Bacterial Cellulose Immersed in Phosphate Buffer Solution. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 10, 55-66.	0.7	18
597	A novel copper/polydimethiylsiloxane nanocomposite for copperâ€containing intrauterine contraceptive devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1428-1436.	1.6	18
598	Microstructure, phase transformation and mechanical property of Ni–Mn–Ga particles/Mg composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 615, 273-277.	2.6	18
599	In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity. Materials Science and Engineering C, 2016, 60, 554-559.	3.8	18
600	High strength and high electrical conductivity CuMg alloy prepared by cryorolling. Transactions of Nonferrous Metals Society of China, 2019, 29, 595-600.	1.7	18
601	Magnetic resonance (MR) safety and compatibility of a novel iron bioresorbable scaffold. Bioactive Materials, 2020, 5, 260-274.	8.6	18
602	Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent. Acta Biomaterialia, 2021, 124, 382-397.	4.1	18
603	Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing. Bioactive Materials, 2022, 11, 181-191.	8.6	18
604	In vitro degradation behavior of novel Zn–Cu–Li alloys: Roles of alloy composition and rolling processing. Materials and Design, 2021, 212, 110288.	3.3	18
605	Nanotopography Sequentially Mediates Human Mesenchymal Stem Cell-Derived Small Extracellular Vesicles for Enhancing Osteogenesis. ACS Nano, 2022, 16, 415-430.	7.3	18
606	A simple route to annihilate defects in silicon nanowires. Chemical Physics Letters, 2000, 328, 346-349.	1.2	17
607	HREM studies of twin boundary structure in deformed martensite in the cold-rolled TiNi shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 297, 185-196.	2.6	17
608	Effect of N2/Ar gas flow ratio on the deposition of TiN/Ti coatings on NiTi shape memory alloy by PIIID. Materials Letters, 2006, 60, 2243-2247.	1.3	17
609	Ti–TiC–TiC/DLC gradient nano-composite film on a biomedical NiTi alloy. Biomedical Materials (Bristol), 2008, 3, 044103.	1.7	17
610	Effect of short-time direct current heating on phase transformation and superelasticity of Ti–50.8at.%Ni alloy. Journal of Alloys and Compounds, 2009, 477, 764-767.	2.8	17
611	Electrochemistry of bilirubin oxidase at carbon nanotubes. Journal of Solid State Electrochemistry, 2010, 14, 249-254.	1.2	17
612	Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy. Materials Letters, 2011, 65, 1073-1075.	1.3	17

Yf Zheng

#	Article	IF	CITATIONS
613	Biocorrosion of coated Mg–Zn–Ca alloy under constant compressive stress close to that of human tibia. Materials Letters, 2012, 70, 174-176.	1.3	17
614	Surface characteristics and electrochemical corrosion behavior of NiTi alloy coated with IrO2. Materials Science and Engineering C, 2013, 33, 15-20.	3.8	17
615	Shape and Site Dependent in Vivo Degradation of Mg-Zn Pins in Rabbit Femoral Condyle. International Journal of Molecular Sciences, 2014, 15, 2959-2970.	1.8	17
616	Cell response of nanographene platelets to human osteoblastâ€like MG63 cells. Journal of Biomedical Materials Research - Part A, 2014, 102, 732-742.	2.1	17
617	Electroless iron plating on pure magnesium for biomedical applications. Materials Letters, 2014, 130, 154-156.	1.3	17
618	Effect of enhanced interfacial reaction on the microstructure, phase transformation and mechanical property of Ni–Mn–Ga particles/Mg composites. Materials and Design, 2015, 82, 77-83.	3.3	17
619	Effect of annealing temperature on martensitic transformation of Ti49.2Ni50.8 alloy processed by equal channel angular pressing. Transactions of Nonferrous Metals Society of China, 2016, 26, 448-455.	1.7	17
620	Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation. Materials Letters, 2017, 202, 9-12.	1.3	17
621	In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Acta Biomaterialia, 2019, 97, 623-636.	4.1	17
622	"Imitative―click chemistry to form a sticking xerogel for the portable therapy of bacteria-infected wounds. Biomaterials Science, 2019, 7, 5383-5387.	2.6	17
623	Microstructure and martensitic transformation of NiTiHfSc high temperature shape memory alloys. Journal of Alloys and Compounds, 2019, 779, 212-218.	2.8	17
624	The orientation dependence of transformation strain of Ni–Mn–Ga polycrystalline alloy and its composite with epoxy resin. Journal of Alloys and Compounds, 2010, 505, 680-684.	2.8	16
625	Microstructure, martensitic transformation and superelasticity of Ti49.6Ni45.1Cu5Cr0.3 shape memory alloy. Materials Letters, 2011, 65, 74-77.	1.3	16
626	Electrochemistry properties of multilayer TiN/Ti coatings on NiTi alloy for cardiac occluder application. Surface and Coatings Technology, 2013, 228, S257-S261.	2.2	16
627	Surface modification by natural biopolymer coatings on magnesium alloys for biomedical applications. , 2015, , 301-333.		16
628	High damping capacity in a wide temperature range of a compositionally graded TiNi alloy prepared by electroplating and diffusion annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 623, 1-3.	2.6	16
629	Achieving High Strength and High Electrical Conductivity in a CuCrZr Alloy Using Equal-Channel Angular Pressing. Acta Metallurgica Sinica (English Letters), 2018, 31, 1084-1088.	1.5	16
630	Preparation and bioactive surface modification of the microwave sintered porous Ti-15Mo alloys for biomedical application. Science China Materials, 2018, 61, 545-556.	3.5	16

#	Article	IF	CITATIONS
631	Micro- and Nanohemispherical 3D Imprints Modulate the Osteogenic Differentiation and Mineralization Tendency of Bone Cells. ACS Applied Materials & Interfaces, 2019, 11, 35513-35524.	4.0	16
632	In vitro and in vivo assessment of the biocompatibility of an paclitaxel-eluting poly-l-lactide-coated Mg-Zn-Y-Nd alloy stent in the intestine. Materials Science and Engineering C, 2019, 105, 110087.	3.8	16
633	Nitrogen-containing bisphosphonate-loaded micro-arc oxidation coating for biodegradable magnesium alloy pellets inhibits osteosarcoma through targeting of the mevalonate pathway. Acta Biomaterialia, 2021, 121, 682-694.	4.1	16
634	Influence of the second phase on protein adsorption on biodegradable Mg alloys' surfaces: Comparative experimental and molecular dynamics simulation studies. Acta Biomaterialia, 2021, 129, 323-332.	4.1	16
635	Exploring the biodegradation of pure Zn under simulated inflammatory condition. Corrosion Science, 2021, 189, 109606.	3.0	16
636	Improvement of ductility and work hardening ability in a high strength Zn-Mg-Y alloy via micron-sized and submicron-sized YZn12 particles. Journal of Alloys and Compounds, 2021, 877, 160268.	2.8	16
637	Substructure and boundary structure of deformed 18R martensite in a Cu–Zn–Al alloy. Acta Materialia, 1999, 47, 3497-3506.	3.8	15
638	Formation of TiN films on biomedical NiTi shape memory alloy by PIIID. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 99-104.	2.6	15
639	Bulk metallic glasses based on ytterbium and calcium. Journal of Non-Crystalline Solids, 2011, 357, 1232-1234.	1.5	15
640	Phase Transformation and Magnetic Property of Ni-Mn-Ga Powders Prepared by Dry Ball Milling. Journal of Materials Engineering and Performance, 2012, 21, 2530-2534.	1.2	15
641	Fabrication and Characterization of Porous Sintered Ti–Ag Compacts forÂBiomedical Application Purpose. Journal of Materials Science and Technology, 2013, 29, 330-338.	5.6	15
642	Screening on binary Ti alloy with excellent mechanical property and castability for dental prosthesis application. Scientific Reports, 2016, 6, 37428.	1.6	15
643	Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities. Journal of Materials Science and Technology, 2021, 71, 31-43.	5.6	15
644	Investigation of Mg–xLi–Zn alloys for potential application of biodegradable bone implant materials. Journal of Materials Science: Materials in Medicine, 2021, 32, 43.	1.7	15
645	Initial micro-galvanic corrosion behavior between Mg2Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation. Journal of Magnesium and Alloys, 2023, 11, 958-965.	5.5	15
646	Recent progress of photo-excited antibacterial materials via chemical vapor deposition. Chemical Engineering Journal, 2022, 437, 135401.	6.6	15
647	High resolution electron microscopy studies on the interface structure of deformed stress induced martensite variants in a Ti–Ni–Nb shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 271-274.	2.6	14
648	Surface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gasâ€flow physiological saline. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1404-1410.	1.6	14

#	Article	IF	CITATIONS
649	Facile immobilization of heparin on bioabsorbable iron via mussel adhesive protein (MAPs). Progress in Natural Science: Materials International, 2014, 24, 458-465.	1.8	14
650	Microstructures, mechanical behavior, cellular response, and hemocompatibility of bulk ultrafineâ€grained pure tantalum. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 221-230.	1.6	14
651	Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial. Journal of Materials Science and Technology, 2016, 32, 89-96.	5.6	14
652	In vivo response of AZ31 alloy as biliary stents: a 6 months evaluation in rabbits. Scientific Reports, 2017, 7, 40184.	1.6	14
653	Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function. Materials Science and Engineering C, 2017, 77, 352-359.	3.8	14
654	Photothermal-controlled sustainable degradation of protective coating modified Mg alloy using near-infrared light. Rare Metals, 2021, 40, 2538-2551.	3.6	14
655	Investigation on the crystal structure and mechanical properties of the ternary compound Mg11-xZnxSr combined with experimental measurements and first-principles calculations. Journal of Magnesium and Alloys, 2023, 11, 1074-1082.	5.5	14
656	Effect of pre-strain on martensitic transformation of Ni43Mn43Co7Sn7 high- temperature shape memory alloy. Materials Letters, 2010, 64, 1879-1882.	1.3	13
657	Assessing the shear band velocity in metallic glasses using a coupled thermo-mechanical model. Philosophical Magazine Letters, 2011, 91, 705-712.	0.5	13
658	Ti–Ge binary alloy system developed as potential dental materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2239-2250.	1.6	13
659	Martensitic Transformation and Shape Memory Effect of NiCoMnSn High Temperature Shape Memory Alloy. Journal of Materials Engineering and Performance, 2012, 21, 2509-2514.	1.2	13
660	Effects of fluctuant magnesium concentration on phenotype of the primary chondrocytes. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	13
661	Microstructure, phase transformation and mechanical property of Nb-doped Ni–Mn–Ga alloys. Intermetallics, 2015, 64, 37-43.	1.8	13
662	Chemically robust carbon nanotube – PTFE superhydrophobic thin films with enhanced ability of wear resistance. Progress in Natural Science: Materials International, 2017, 27, 396-399.	1.8	13
663	Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn. Additive Manufacturing, 2020, 33, 101134.	1.7	13
664	Photo-excited antibacterial poly(ƕcaprolactone)@MoS2/ZnS hybrid nanofibers. Chemical Engineering Journal, 2022, 434, 134764.	6.6	13
665	Evidence-based biomaterials research. Bioactive Materials, 2022, 15, 495-503.	8.6	13
666	Study of deformation micromechanism in cold-deformed TiNi based alloys. Intermetallics, 2005, 13, 281-288	1.8	12

#	Article	IF	CITATIONS
667	Preparation of poly(l-lactide) and its application in bioelectrochemistry. Journal of Electroanalytical Chemistry, 2008, 621, 69-74.	1.9	12
668	The characterization of mechanical and surface properties of poly (glycerol–sebacate–lactic acid) during degradation in phosphate buffered saline. Applied Surface Science, 2008, 255, 350-352.	3.1	12
669	TRANSFORMATION BEHAVIOR AND SHAPE MEMORY EFFECT OF A CoAl ALLOY. International Journal of Modern Physics B, 2009, 23, 1931-1936.	1.0	12
670	Electrochemical Stability of Orthopedic Porous NiTi Shape Memory Alloys Treated by Different Surface Modification Techniques. Journal of the Electrochemical Society, 2009, 156, C187.	1.3	12
671	Corrosion behavior of newly developed Ti–Ag–Fe dental alloys in neutral saline solution. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 766-770.	0.8	12
672	Effect of Aging Treatment on Superelasticity of a Ti48.8Ni50.8V0.4 Alloy. Journal of Materials Engineering and Performance, 2012, 21, 2566-2571.	1.2	12
673	Magnetic-field-induced reverse transformation in a NiCoMnSn high temperature ferromagnetic shape memory alloy. Journal of Magnetism and Magnetic Materials, 2013, 347, 72-74.	1.0	12
674	Biocompatibility of nano-hydroxyapatite/Mg-Zn-Ca alloy composite scaffolds to human umbilical cord mesenchymal stem cells from Wharton's jelly in vitro. Science China Life Sciences, 2014, 57, 181-187.	2.3	12
675	Rapid and highly effective bacteria-killing by polydopamine/IR780@MnO2–Ti using near-infrared light. Progress in Natural Science: Materials International, 2020, 30, 677-685.	1.8	12
676	Fabrication of Citric Acid/RGD Multilayers on Mgâ€Znâ€Yâ€Nd Alloy via Layerâ€byâ€Layer Selfâ€Assembly for Promoting Surface Biocompatibility. Advanced Materials Interfaces, 2021, 8, 2002241.	1.9	12
677	Improved corrosion resistance and cytocompatibility of Mg–Zn–Y–Nd alloy by the electrografted polycaprolactone coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127471.	2.3	12
678	Local pH and oxygen concentration at the interface of Zn alloys in Tris-HCl or HEPES buffered Hanks' balanced salt solution. Corrosion Science, 2022, 197, 110061.	3.0	12
679	Biodegradable Zn–Sr alloys with enhanced mechanical and biocompatibility for biomedical applications. Smart Materials in Medicine, 2022, 3, 117-127.	3.7	12
680	Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy. Journal of Materials Science and Technology, 2022, 114, 90-101.	5.6	12
681	Antimicrobial properties of co-doped tricalcium phosphates Ca3-2(MËŠMËŠËŠ) (PO4)2 (M = Zn2+, Cu2+, Mn2+)	Tj£ŢQq1	1 0,784314 12
682	Precipitation in nanostructured alloys: A brief review. MRS Bulletin, 2021, 46, 250-257.	1.7	11
683	Effective easing of the side effects of copper intrauterine devices using ultra-fine-grained Cu-0.4Mg alloy. Acta Biomaterialia, 2021, 128, 523-539.	4.1	11
684	Using tea nanoclusters as β-lactamase inhibitors to cure multidrug-resistant bacterial pneumonia: A promising therapeutic strategy by Chinese materioherbology. Fundamental Research, 2022, 2, 496-504.	1.6	11

#	Article	IF	CITATIONS
685	Facile fabrication of biodegradable endothelium-mimicking coatings on bioabsorbable zinc-alloy stents by one-step electrophoretic deposition. Journal of Materials Chemistry B, 2022, 10, 3083-3096.	2.9	11
686	Alkali-heat treatment of a low modulus biomedical Ti–27Nb alloy. Biomedical Materials (Bristol), 2009, 4, 044108.	1.7	10
687	Cell responses and hemocompatibility of g-HA/PLA composites. Science China Life Sciences, 2011, 54, 366-371.	2.3	10
688	Low temperature growth and properties of ZnO nanorod arrays. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 035006.	0.7	10
689	Two-way shape memory effect of TiNiSn alloys developed by martensitic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 434-437.	2.6	10
690	In vitro bioactivity and biocompatibility evaluation of bulk nanostructured titanium in osteoblast-like cells by quantitative proteomic analysis. Journal of Materials Chemistry B, 2013, 1, 1926.	2.9	10
691	Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification. Journal of Materials Science and Technology, 2019, 35, 2682-2692.	5.6	10
692	In vitro studies of biodegradable Zn-0.1Li alloy for potential esophageal stent application. Materials Letters, 2020, 275, 128190.	1.3	10
693	Magnesium cationic cue enriched interfacial tissue microenvironment nurtures the osseointegration of gamma-irradiated allograft bone. Bioactive Materials, 2022, 10, 32-47.	8.6	10
694	Effect of nitrogen on the structure evolution and biological properties of mesoporous bioactive glass nanospheres: Experiments and simulations. Journal of Non-Crystalline Solids, 2022, 578, 121329.	1.5	10
695	Feasibility evaluation of a Zn-Cu alloy for intrauterine devices: In vitro and in vivo studies. Acta Biomaterialia, 2022, 142, 374-387.	4.1	10
696	Tailoring of Biodegradable Magnesium Alloy Surface with Schiff Base Coating via Electrostatic Spraying for Better Corrosion Resistance. Metals, 2022, 12, 471.	1.0	10
697	Surface photodynamic ion sterilization of ITO-Cu2O/ZnO preventing touch infection. Journal of Materials Science and Technology, 2022, 122, 10-19.	5.6	10
698	Eco-friendly bacteria-killing by nanorods through mechano-puncture with top selectivity. Bioactive Materials, 2022, 15, 173-184.	8.6	10
699	HREM studies on the microstructure of severely cold-rolled TiNi alloy after reverse martensitic transformation. Materials Letters, 1999, 41, 9-15.	1.3	9
700	FeS2 (pyrite) electrodeposition thin films and study of growth mechanism. Science in China Series D: Earth Sciences, 2005, 48, 601.	0.9	9
701	Fabrication and Characterization of Elastomeric Polyester/Carbon Nanotubes Nanocomposites for Biomedical Application. Journal of Nanoscience and Nanotechnology, 2011, 11, 3126-3133.	0.9	9
702	Proteomic profile of mouse fibroblasts exposed to pure magnesium extract. Materials Science and Engineering C, 2016, 69, 522-531.	3.8	9

#	Article	IF	CITATIONS
703	Biological effect and molecular mechanism study of biomaterials based on proteomic research. Journal of Materials Science and Technology, 2017, 33, 607-615.	5.6	9
704	Effect of Solution Pretreatment on Homogeneity and Corrosion Resistance of Biomedical Mg–Zn–Ca Alloy Processed by High Pressure Torsion. Advanced Engineering Materials, 2017, 19, 1600326.	1.6	9
705	Microstructure, mechanical and corrosion properties of Mg–Zn–Sr–Ca alloys for use as potential biodegradable implant materials. Corrosion Engineering Science and Technology, 2020, 55, 739-746.	0.7	9
706	Influence of Laser Energy Input and Shielding Gas Flow on Evaporation Fume during Laser Powder Bed Fusion of Zn Metal. Materials, 2021, 14, 2677.	1.3	9
707	Effect of aging on martensitic transformation behavior of Ti48.8Ni50.8V0.4 alloy. Journal of Materials Science, 2011, 46, 6432-6436.	1.7	8
708	Doping inorganic ions to regulate bioactivity of Ca–P coating on bioabsorbable high purity magnesium. Progress in Natural Science: Materials International, 2014, 24, 479-485.	1.8	8
709	Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1013-1027.	1.9	8
710	A novel biofuel cell based on electrospun collagen-carbon nanotube nanofibres. Bio-Medical Materials and Engineering, 2014, 24, 229-235.	0.4	8
711	Effect of Zr addition on the microstructure, phase transformation and mechanical property of Ni50Mn25Ga17Cu8 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 617, 46-51.	2.6	8
712	InÂVitro Comparative Effect of Three Novel Borate Bioglasses on the Behaviors of Osteoblastic MC3T3-E1 Cells. Journal of Materials Science and Technology, 2014, 30, 979-983.	5.6	8
713	A Biodegradable Coating Based on Self-Assembled Hybrid Nanoparticles to Control the Performance of Magnesium. Macromolecular Chemistry and Physics, 2015, 216, 1952-1962.	1.1	8
714	On the Influence of Athermal ω and α Phase Instabilities on the Scale of Precipitation of the α Phase in Metastable β-Ti Alloys. Jom, 2016, 68, 1343-1349.	0.9	8
715	In vitro investigation of cellular effects of magnesium and magnesium-calcium alloy corrosion products on skeletal muscle regeneration. Journal of Materials Science and Technology, 2019, 35, 2503-2512.	5.6	8
716	Microstructure and properties of biodegradable Mg–Zn–Y-Nd alloy micro-tubes prepared by an improved method. Journal of Alloys and Compounds, 2020, 835, 155369.	2.8	8
717	Synthesis and degradation behaviour of Zn-modified coating on Mg alloy. Surface Engineering, 2021, 37, 963-971.	1.1	8
718	Zn content mediated fibrinogen adsorption on biodegradable Mg-Zn alloys surfaces. Journal of Magnesium and Alloys, 2021, 9, 2145-2154.	5.5	8
719	The electrochemical behavior of a Ti50Ni47Fe3 shape memory alloy. Materials Letters, 2006, 60, 1646-1650.	1.3	7
720	Dependence of microstructure and thermal conductivity of EB-PVD thermal barrier coatings on the substrate rotation speed. Physics Procedia, 2011, 18, 206-210.	1.2	7

6

#	Article	IF	CITATIONS
721	Biological behavior of fibroblast on contractile collagen hydrogel crosslinked by γâ€irradiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 2669-2679.	2.1	7
722	The inverse correlation between series resistance and parallel resistance of small molecule organic solar cells. Progress in Natural Science: Materials International, 2015, 25, 323-326.	1.8	7
723	Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank's solution. Scientific Reports, 2016, 6, 35803.	1.6	7
724	In vitro characterization of ZM21 mini-tube used for biodegradable metallic stent. Materials Letters, 2018, 211, 261-265.	1.3	7
725	New nitinol endovascular stent-graft system for abdominal aortic aneurysm with finite element analysis and experimental verification. Rare Metals, 2019, 38, 495-502.	3.6	7
726	Micro-patterned hydroxyapatite/silk fibroin coatings on Mg-Zn-Y-Nd-Zr alloys for better corrosion resistance and cell behavior guidance. Frontiers of Materials Science, 2020, 14, 413-425.	1.1	7
727	Effects of Sc addition and aging on microstructure and martensitic transformation of Ni-rich NiTiHfSc high temperature shape memory alloys. Journal of Alloys and Compounds, 2020, 845, 156331.	2.8	7
728	Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy. Crystals, 2021, 11, 425.	1.0	7
729	Improved mechanical, degradation, and biological performances of Zn–Fe alloys as bioresorbable implants. Bioactive Materials, 2022, 17, 334-343.	8.6	7
730	Reversing Multidrugâ€Resistant <i>Escherichia coli</i> by Compromising Its BAM Biogenesis and Enzymatic Catalysis through Microwave Hyperthermia Therapy. Advanced Functional Materials, 2022, 32, .	7.8	7
731	Enhanced Bioactivity of Sandblasted and Acid-Etched Titanium Surfaces. Advanced Materials Research, 2009, 79-82, 393-396.	0.3	6
732	Formation mechanism of novel two-dimensional single crystalline dendritic copper plates in an aqueous environment. Acta Materialia, 2011, 59, 7177-7188.	3.8	6
733	Corrosion protection of Mgâ€Znâ€Yâ€Nd alloy by flowerâ€like nanostructured <scp>TiO₂</scp> film for vascular stent application. Journal of Chemical Technology and Biotechnology, 2013, 88, 2062-2066.	1.6	6
734	Effects of ball milling time on porous Ti–3Ag alloy and its apatite-inducing abilities. Transactions of Nonferrous Metals Society of China, 2013, 23, 1356-1366.	1.7	6
735	Fracture behavior and structural transition of Ni46Mn33Ga17Cu4â^'Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 95-101.	2.6	6
736	Microstructure and martensitic transformation of TiNiNbB shape memory alloys. Intermetallics, 2015, 64, 32-36.	1.8	6
737	Microstructure and Damping Property of Polyurethane Composites Hybridized with Ultraviolet Absorbents. Advances in Materials Science and Engineering, 2018, 2018, 1-9.	1.0	6

Bioabsorbable metallic stents. , 2018, , 99-134.

#	Article	IF	CITATIONS
739	Characterization of the Interfacial Structure of Coarse α Precipitates in a Metastable β-Ti Alloy Ti-5Al-5Mo-5V-3Cr. Jom, 2019, 71, 2291-2295.	0.9	6
740	Preparation of Biodegradable Mg/β-TCP Biofunctional Gradient Materials by Friction Stir Processing and Pulse Reverse Current Electrodeposition. Acta Metallurgica Sinica (English Letters), 2020, 33, 103-114.	1.5	6
741	In vivo studies on Mg-1Sc alloy for orthopedic application: A 5-months evaluation in rabbits. Materials Letters, 2020, 262, 127130.	1.3	6
742	Effects of alloy elements on adsorption of fibrinogen on biodegradable magnesium alloys surfaces: The MD simulations and experimental studies. Applied Surface Science, 2020, 512, 145725.	3.1	6
743	Enhanced Bioactivity of Biomedical NiTi Through Surface Plasma Polymerization. Nanoscience and Nanotechnology Letters, 2015, 7, 220-225.	0.4	6
744	Surface characteristics and biological properties of paclitaxel-embedding PLGA coatings on TiNi alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1119-1123.	2.6	5
745	Martensitic transformation and microstructure in Nb–Ru–Fe shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 862-864.	2.6	5
746	Influence of negative voltage on the structure and properties of DLC films deposited on NiTi alloys by PBII. Journal of Materials Science, 2006, 41, 4179-4183.	1.7	5
747	Phase Constitution, Mechanical Property and Corrosion Resistance of the Ti-Nb Alloys. Key Engineering Materials, 2006, 324-325, 655-658.	0.4	5
748	Phase transformation and microstructure of Ni–Mn–Ga ferromagnetic shape memory alloy particles. Physica Scripta, 2007, T129, 227-230.	1.2	5
749	The electrochemical behavior and surface analysis of Ti _{49.6} Ni _{45.1} Cu ₅ Cr _{0.3} alloy for orthodontic usage. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 335-340.	1.6	5
750	Phase transformation of NiTi shape memory alloy powders prepared by ball milling. Journal of Alloys and Compounds, 2009, 477, 576-579.	2.8	5
751	ZnS nanorods with tripod-like and tetrapod-like legs. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 035005.	0.7	5
752	Comparative In Vitro Study of Ti-12V-9Sn Shape Memory Alloy with C.P. Ti and Ti-12V Alloy for Potential Biomedical Application. Journal of Materials Engineering and Performance, 2012, 21, 2695-2700.	1.2	5
753	Microstructure and phase transformation of Ni46Mn33Ga17Cu4â^'xZrx alloys. Materials Letters, 2014, 116, 307-310.	1.3	5
754	Microstructure and mechanical properties of Zn based composites reinforced by Ti ₃ AlC ₂ . Advances in Applied Ceramics, 2015, 114, 315-320.	0.6	5
755	Characterization of modified magnesium and magnesium alloys for biomedical applications. , 2015, , 263-282.		5
756	Effect of aging and ball milling on the phase transformation of Ni50Mn25Ga17Cu8â^'xZrx alloys. Intermetallics, 2015, 58, 56-61.	1.8	5

#	Article	IF	CITATIONS
757	Editorial. Bioactive Materials, 2016, 1, 1.	8.6	5
758	Microstructure, mechanical properties and corrosion fatigue behaviour of biodegradable Mg–Zn–Y–Nd alloy prepared by double extrusion. Corrosion Engineering Science and Technology, 2021, 56, 584-593.	0.7	5
759	Degradation of Mg-Zn-Y-Nd alloy intestinal stent and its effect on the growth of intestinal endothelial tissue in rabbit model. Journal of Magnesium and Alloys, 2022, 10, 2208-2219.	5.5	5
760	Characteristics of the A/D type twin boundary in 18R martensite in a Cu–Zn–Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 251, 150-156.	2.6	4
761	Effect of deposition and treatment conditions on growth of nanometer PtSi heterostructure. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2406.	1.6	4
762	Magnetic Field-Controlled Shape Memory in Ni52.5Mn23.5Ga24 Single Crystals. Advanced Engineering Materials, 2001, 3, 330-333.	1.6	4
763	Controlled Synthesis and Characterization of ZnSe Quantum Dots. Journal of Nanoscience and Nanotechnology, 2010, 10, 7812-7815.	0.9	4
764	Comparative Evaluation on the In Vitro Biological Performance of Ti45Al8.5Nb Intermetallic with Ti6Al4V and Ti6Al7Nb Alloys. Advanced Engineering Materials, 2011, 13, B187.	1.6	4
765	Effect of aging on martensitic transformation and superelasticity of TiNiCr shape memory alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 2598-2605.	1.7	4
766	Preparation of single-phase Ti2AlN coating by magnetron sputtering with cost-efficient hot-pressed Ti-Al-N targets. Ceramics International, 2018, 44, 17530-17534.	2.3	4
767	Osseointegration: Longâ€Term Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity (Adv. Healthcare Mater. 5/2019). Advanced Healthcare Materials, 2019, 8, 1970020.	3.9	4
768	Photocatalysis: Lightâ€Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface (Small Methods 3/2019). Small Methods, 2019, 3, 1970008.	4.6	4
769	Inverted Hydration Layers on Bio-Magnesium Surfaces in the Initial Degradation Stage and their Influence on Adsorption of Amino Acid Analogues: The Metadynamics Simulations. Langmuir, 2019, 35, 17009-17015.	1.6	4
770	Biomechanics study of a 3D printed sacroiliac joint fixed modular hemipelvic endoprosthesis. Clinical Biomechanics, 2020, 74, 87-95.	0.5	4
771	Firstâ€principles studies on structure stability, segregation, and work function of <scp>Mg</scp> doped with metal elements. International Journal of Quantum Chemistry, 2021, 121, e26626.	1.0	4
772	Mussel bioinspired morphosynthesis of substrate anchored core–shell silver self-assemblies with multifunctionality for bioapplications. Materials Science and Engineering C, 2021, 123, 112025.	3.8	4
773	Microstructure and mechanical properties of the sub-rapidly solidified Mg―Zn―Y―Nd alloy prepared by step-copper mold casting. Materials Today Communications, 2021, 27, 102308.	0.9	4
774	The effect of simulated inflammatory conditions on the corrosion of Mg, Fe and CoCrMo. Materials Letters, 2022, 308, 131197.	1.3	4

#	Article	IF	CITATIONS
775	Feasibility evaluation of a Cu-38 Zn alloy for intrauterine devices: In vitro and in vivo studies. Acta Biomaterialia, 2022, 138, 561-575.	4.1	4
776	Type II twins and their deformation characteristics in 18R martensite in a Cu–Zn–Al alloy. Materials Letters, 1998, 34, 351-355.	1.3	3
777	HREM Studies on the Microstructure of Severely Cold-Rolled TiNi Alloy after Reverse Martensitic Transformation. Materials Science Forum, 2000, 327-328, 159-162.	0.3	3
778	Mg Alloys Development and Surface Modification for Biomedical Application. , 0, , .		3
779	Microstructure, Phase Transformation and Mechanical Property of Ni-Co-Mn-In Alloy Prepared by Spark Plasma Sintering. Materials Science Forum, 0, 815, 222-226.	0.3	3
780	Simulation and Experimental Investigation for the Homogeneity of Ti49.2Ni50.8 Alloy Processed by Equal Channel Angular Pressing. Metals, 2016, 6, 45.	1.0	3
781	New Formulas of Shear Strain during Equal-channel Angular Pressing Process with Consideration of Influences of Velocity and Motion Trajectory. Journal of Iron and Steel Research International, 2016, 23, 1020-1027.	1.4	3
782	Calcium Phosphate Coatings for Metallic Orthopedic Biomaterials. , 2017, , 167-183.		3
783	Microstructure, mechanical and corrosion properties of ultrafine-grained Mg-2%Sr alloy. IOP Conference Series: Materials Science and Engineering, 2018, 380, 012014.	0.3	3
784	Fabrication of Cr2AlC coating from a cost-efficient Cr–Al–C target by arc ion plating. Surface Innovations, 2019, 7, 4-9.	1.4	3
785	Self-ion irradiation response of (CoCrFeNi)94Ti2Al4 alloy containing coherent nanoprecipitates. Journal of Nuclear Materials, 2021, 549, 152889.	1.3	3
786	Synthesis and Characterization of ZnSe and ZnSe/ZnS Quantum Dots for Potential Biomedical Application. Advanced Science Letters, 2011, 4, 1509-1513.	0.2	3
787	Biomedical titanium implants based on additive manufacture. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2016, 46, 1097-1115.	0.3	3
788	Design and evaluation of an air-insulated catheter for intra-arterial selective cooling infusion from numerical simulation and in vitro experiment. Medical Engineering and Physics, 2022, 99, 103736.	0.8	3
789	Preparing a Bioactive (Chitosan/Sodium Hyaluronate)/SrHA Coating on Mg–Zn–Ca Alloy for Orthopedic Implant Applications. Frontiers in Materials, 2022, 8, .	1.2	3
790	Preparation and characterization of silk fibroin/silica thermal insulation coatings on catheters. Surface Innovations, 2023, 11, 155-168.	1.4	3
791	PH Stimuliâ€Responsive, Rapidly Selfâ€healable Coatings Enhanced the Corrosion Resistance and Osteogenic Differentiation of Mgâ€1Ca Osteoimplant. Small, 2022, 18, e2106056.	5.2	3
792	Mechanical Distribution and New Bone Regeneration After Implanting 3D Printed Prostheses for Repairing Metaphyseal Bone Defects: A Finite Element Analysis and Prospective Clinical Study. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	3

#	Article	IF	CITATIONS
793	Title is missing!. Journal of Materials Science Letters, 1998, 17, 1657-1659.	0.5	2
794	Microstructural Evolution and Deformation Micromechanism of Cold-Deformed TiNi-Based Alloys. Materials Science Forum, 2002, 394-395, 185-192.	0.3	2
795	Interface structure and mobility in martensitic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 900-904.	2.6	2
796	Effect of aging on transformation behavior and shape memory effect of a CuAlNb high temperature shape memory alloy. Journal of Materials Science, 2006, 41, 6165-6167.	1.7	2
797	EFFECT OF C2H2 FLOW RATE ON THE DEPOSITION OF TI-TIC-TIC/DLC GRADIENT NANO-COMPOSITE FILM ON NITI ALLOY. International Journal of Modern Physics B, 2010, 24, 2357-2362.	1.0	2
798	Optimization of dual effects of Mg–1Ca alloys on the behavior of chondrocytes and osteoblasts in vitro. Progress in Natural Science: Materials International, 2014, 24, 433-440.	1.8	2
799	Mg-RE-Based Alloy Systems for Biomedical Applications. , 2015, , 311-376.		2
800	Microstructure, mechanical properties, corrosion behavior and hemolysis of as-extruded biodegradable Mg-Sn-Zn alloy. AIP Conference Proceedings, 2016, , .	0.3	2
801	Development of Biodegradable Zn-Based Medical Implants. , 2017, , 311-329.		2
802	Diagnostics of the thickness of a plasma electrolytic oxidation coating on a nanostructured Mg-Sr alloy. IOP Conference Series: Materials Science and Engineering, 2018, 292, 012067.	0.3	2
803	Manufacturing of cardiovascular stents. , 2020, , 317-340.		2
804	Simulation of dynamic recrystallization behavior of hot extruded Mg-Zn-Y-Nd alloy tubes by the finite element method. Materials Today Communications, 2021, 27, 102384.	0.9	2
805	A simple approach for synthesizing polyglycolide coating on magnesium alloy. Materials Letters, 2021, 298, 130046.	1.3	2
806	Structure and mobility of martensite variant interfaces in a Cu-Zn-AI shape memory alloy. European Physical Journal Special Topics, 2003, 112, 519-522.	0.2	2
807	Shape Memory Biomaterials and Their Clinical Applications. , 2021, , 195-255.		2
808	Laser Powder Bed Fusion for Fabrication of Metal Orthopedic Implants. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47, 1100001.	0.2	2
809	A compound Schiff base coating on biomedical magnesium alloy for enhanced corrosion resistance and biocompatibility. , 2023, 1, 100003.		2
810	Title is missing!. Journal of Materials Science Letters, 1998, 17, 395-397.	0.5	1

#	Article	IF	CITATIONS
811	The Studies on Biocompatibility of Self-Expanding NiTi Stent and Apoptosis of Smooth Muscle Cells after Stenting. Key Engineering Materials, 2005, 288-289, 587-590.	0.4	1
812	A Ni/Surface-Modified Diamond Composite Electroplating Coating on Superelastic NiTi Alloy as Potential Dental Bur Design. Materials Science Forum, 0, 610-613, 1339-1342.	0.3	1
813	Reach on Impact Line of Hyperboloid Shallow Shell Surface Deflection. Materials Science Forum, 0, 628-629, 511-516.	0.3	1
814	Numerical Study of Springback Laws in Metal Forming of Diaphragm of Automotive Horn. Materials Science Forum, 2009, 628-629, 505-510.	0.3	1
815	The potential biohazards of nanosized wear particles at bone–prosthesis interface. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 563-568.	0.8	1
816	Magnesium Alloy Stent Expansion Behavior Simulated by Finite Element Method. Applied Mechanics and Materials, 2012, 232, 697-700.	0.2	1
817	Effect of heat treatment on fatigue behaviour of biomedical Ni–Ti alloy wires under ultrasonic conditions. Materials Technology, 2012, 27, 8-10.	1.5	1
818	Deformation mechanism of hot spinning of NiTi shape memory alloy tube based on FEM. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 811-814.	0.4	1
819	In vitro study on porous silver scaffolds prepared by electroplating method using cellular carbon skeleton as the substrate. Materials Science and Engineering C, 2012, 32, 909-915.	3.8	1
820	Biodegradation Mechanism and Influencing Factors of Mg and Its Alloys. , 2015, , 37-68.		1
821	The Preparation and Characterization of NiTi/CNT/Polyurethane Composite. Materials Science Forum, 0, 813, 243-249.	0.3	1
822	A Novel pH-Responsive Silk Fibroin-Based CuO/Ag Micro/Nano Coating Endow Polyetheretherketone with Synergistic Antibacterial Ability, Osteogenesis, and Angiogenesis. SSRN Electronic Journal, 0, , .	0.4	1
823	Biodegradable Zn-Mn Alloys with Suitable Mechanical Strength, High Plasticity, and Good Osteogenic Activities for Orthopedic Applications. SSRN Electronic Journal, 0, , .	0.4	1
824	Construction of Bio-functionalized ZnO Coatings on Titanium Implants with Both Self-Antibacterial and Osteoinductive Properties. , 2020, , 169-182.		1
825	Fatigue Behavior of Ni-Ti Alloy Endodontic Files under Ultrasonic Unconstrained Condition. Key Engineering Materials, 0, 417-418, 77-80.	0.4	0
826	Current Research Activities of Biomedical Mg Alloys in China. , 2011, , 397-399.		0
827	EFFECT OF HEAT TREATMENT ON FATIGUE BEHAVIOR OF BIOMEDICAL Ni - Ti ALLOY WIRES UNDER ULTRASONIC CONDITIONS. , 2011, , .		0
828	Investigation on mechanical properties of Y doped Ni <inf>50</inf> Mn <inf>37</inf> Sn <inf>13</inf> shape memory alloys. , 2011, , .		0

#	Article	IF	CITATIONS
829	Mg with High Purity for Biomedical Applications. , 2015, , 143-172.		0
830	Characterization of Alpha/Beta Interface Structure in a Titanium Alloy Using Aberration-Corrected Scanning Transmission Electron Microscope. Microscopy and Microanalysis, 2016, 22, 1974-1975.	0.2	0
831	Global collaboration on Biomaterials is starting with Binational Workshops–Sino-German Workshop on Biomaterials in Beijing 2016. Bioactive Materials, 2017, 2, 51-52.	8.6	0
832	Preface to SPECIAL ISSUE: Advances in Metallic Biomaterials. Science China Materials, 2018, 61, 439-439.	3.5	0
833	3D-Printed Individualized Porous Implants for Large Bone Defects: Novel Therapeutic Approach Involving 'Implant-Bone' Interface Fusion. SSRN Electronic Journal, 0, , .	0.4	0
834	Very Fine-Grained Cu-0.4Mg Alloy Improving Intrauterine Device. Microscopy and Microanalysis, 2021, 27, 3464-3465.	0.2	0
835	ROS Induced Bactericidal Activity of Zn-Doped Ti-O Amorphism Outer-Layered Coatings and Enhanced Osseointegration in Bacteria-Infected Rat Tibias. SSRN Electronic Journal, 0, , .	0.4	0
836	Evaluation of Structure-Controlled Silk Fibroin Coatings for Orthopedic Infection and In-Situ Osteogenesis: <i>In Vitro</i> and <i>In Vivo</i> . SSRN Electronic Journal, 0, , .	0.4	0
837	Biodegradable Zn-Cu Alloys Show Antibacterial Activity Against Mrsa Bone Infection by Inhibiting Biofilm Formation and Inflammatory Toxic Side-Effects. SSRN Electronic Journal, 0, , .	0.4	0
838	Polyetheretherketone with Citrate Potentiated Influx of Copper Boosts Osteogenesis, Angiogenesis, and Bacteria-Triggered Antibacterial Abilities. SSRN Electronic Journal, 0, , .	0.4	0
839	Additive Manufacturing of Bioscaffolds for Bone Regeneration. , 2020, , 313-332.		0