Liang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938138/publications.pdf Version: 2024-02-01

LIANC HE

#	Article	IF	CITATIONS
1	Graphene Scrollâ€Coated αâ€MnO ₂ Nanowires as Highâ€Performance Cathode Materials for Aqueous Zn″on Battery. Small, 2018, 14, e1703850.	5.2	563
2	Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na ₃ V ₂ (PO ₄) ₃ Nanograins for Highâ€Performance Symmetric Sodiumâ€Ion Batteries. Advanced Materials, 2014, 26, 3545-3553.	11.1	473
3	Manganese Oxide/Carbon Yolk–Shell Nanorod Anodes for High Capacity Lithium Batteries. Nano Letters, 2015, 15, 738-744.	4.5	345
4	SnO ₂ Quantum Dots@Graphene Oxide as a Highâ€Rate and Longâ€Life Anode Material for Lithiumâ€Ion Batteries. Small, 2016, 12, 588-594.	5.2	338
5	Multicomponent Hierarchical Cuâ€Doped NiCoâ€LDH/CuO Double Arrays for Ultralongâ€Life Hybrid Fiber Supercapacitor. Advanced Functional Materials, 2019, 29, 1809004.	7.8	313
6	A Large Scalable and Lowâ€Cost Sulfur/Nitrogen Dualâ€Doped Hard Carbon as the Negative Electrode Material for Highâ€Performance Potassiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901379.	10.2	195
7	Ultrafine Nickelâ€Nanoparticleâ€Enabled SiO ₂ Hierarchical Hollow Spheres for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2018, 28, 1704561.	7.8	193
8	Hydrated vanadium pentoxide with superior sodium storage capacity. Journal of Materials Chemistry A, 2015, 3, 8070-8075.	5.2	190
9	Nanoflakeâ€Assembled Hierarchical Na ₃ V ₂ (PO ₄) ₃ /C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism. Advanced Energy Materials, 2015, 5, 1401963.	10.2	169
10	Oxygen Vacancy-Determined Highly Efficient Oxygen Reduction in NiCo ₂ O ₄ /Hollow Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 16410-16417.	4.0	148
11	Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy, 2014, 8, 196-204.	8.2	140
12	Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy, 2016, 28, 224-231.	8.2	139
13	Field-Effect Tuned Adsorption Dynamics of VSe ₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. Nano Letters, 2017, 17, 4109-4115.	4.5	134
14	α-MoO3- by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy, 2018, 49, 555-563.	8.2	133
15	Carbonâ€MEMSâ€Based Alternating Stacked MoS ₂ @rGO NT Microâ€Supercapacitor with High Capacitance and Energy Density. Small, 2017, 13, 1700639.	5.2	132
16	Self-sacrificed synthesis of carbon-coated SiO _x nanowires for high capacity lithium ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 4183-4189.	5.2	112
17	Rapid, low-temperature synthesis of single-crystalline Co ₃ O ₄ nanorods on silicon substrates on a large scale. Nanotechnology, 2008, 19, 155606.	1.3	97
18	In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy, 2016, 24, 165-188.	8.2	97

LIANG HE

#	Article	IF	CITATIONS
19	Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Research, 2017, 10, 2471-2481.	5.8	97
20	<i>In situ</i> nitrogen-doped mesoporous carbon nanofibers as flexible freestanding electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23620-23627.	5.2	95
21	Onâ€Chip Ni–Zn Microbattery Based on Hierarchical Ordered Porous Ni@Ni(OH) ₂ Microelectrode with Ultrafast Ion and Electron Transport Kinetics. Advanced Functional Materials, 2019, 29, 1808470.	7.8	88
22	A Low-Cost Zn-Based Aqueous Supercapacitor with High Energy Density. ACS Applied Energy Materials, 2019, 2, 5835-5842.	2.5	80
23	Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. Journal of Power Sources, 2014, 255, 235-241.	4.0	78
24	Top-down fabrication of three-dimensional porous V ₂ O ₅ hierarchical microplates with tunable porosity for improved lithium battery performance. Journal of Materials Chemistry A, 2014, 2, 3297-3302.	5.2	76
25	Integrated SnO ₂ nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. Physical Chemistry Chemical Physics, 2015, 17, 7619-7623.	1.3	74
26	Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Research, 2016, 9, 2510-2519.	5.8	73
27	Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices. Nano Letters, 2016, 16, 1523-1529.	4.5	72
28	Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities. Advanced Materials, 2015, 27, 7476-7482.	11.1	70
29	Doping Nanoscale Graphene Domains Improves Magnetism in Hexagonal Boron Nitride. Advanced Materials, 2019, 31, e1805778.	11.1	69
30	Co-Electrodeposited porous PEDOT–CNT microelectrodes for integrated micro-supercapacitors with high rate capability, and long cycling life. Nanoscale, 2019, 11, 7761-7770.	2.8	69
31	An acetylene black modified gel polymer electrolyte for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13679-13686.	5.2	68
32	Copper silicate nanotubes anchored on reduced graphene oxide for long-life lithium-ion battery. Energy Storage Materials, 2017, 7, 152-156.	9.5	67
33	Structural Engineering and Coupling of Two-Dimensional Transition Metal Compounds for Micro-Supercapacitor Electrodes. ACS Central Science, 2020, 6, 1901-1915.	5.3	53
34	Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. Journal of Energy Chemistry, 2020, 49, 224-232.	7.1	53
35	Recent Advances in Highâ€Performance Microbatteries: Construction, Application, and Perspective. Small, 2020, 16, e2003251.	5.2	48
36	Mesoporous VO ₂ nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Advances, 2014, 4, 33332-33337.	1.7	47

LIANG HE

#	Article	IF	CITATIONS
37	Wearable Textileâ€Based Coâ^'Zn Alkaline Microbattery with High Energy Density and Excellent Reliability. Small, 2020, 16, e2000293.	5.2	47
38	Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by On-chip micro-device. Nano Energy, 2021, 83, 105748.	8.2	46
39	The Young's modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation. Applied Physics Letters, 2015, 106, .	1.5	45
40	Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 10420-10427.	4.0	43
41	High Energy Density Micro-Supercapacitor Based on a Three-Dimensional Bicontinuous Porous Carbon with Interconnected Hierarchical Pores. ACS Applied Materials & Interfaces, 2019, 11, 948-956.	4.0	42
42	Interwoven Nanowire Based Onâ€Chip Asymmetric Microsupercapacitor with High Integrability, Areal Energy, and Power Density. Advanced Energy Materials, 2020, 10, 2001873.	10.2	40
43	Pyrolyzed carbon with embedded NiO/Ni nanospheres for applications in microelectrodes. RSC Advances, 2016, 6, 43436-43441.	1.7	37
44	Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries. Journal of Materials Science, 2017, 52, 3697-3718.	1.7	36
45	Integration of VS2 nanosheets into carbon for high energy density micro-supercapacitor. Journal of Alloys and Compounds, 2020, 823, 151769.	2.8	32
46	In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode. Nano Energy, 2016, 22, 406-413.	8.2	31
47	Rapid, all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors. Nanoscale, 2017, 9, 11765-11772.	2.8	30
48	Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process. Nano Research, 2017, 10, 3743-3753.	5.8	27
49	Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Advances, 2021, 3, 6271-6293.	2.2	27
50	Microstructuring of carbon nanotubes-nickel nanocomposite. Nanotechnology, 2015, 26, 195601.	1.3	26
51	Facile Synthesis of Bi ₂ S ₃ @SiO ₂ Core-Shell Microwires as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A6110-A6115.	1.3	26
52	Understanding the Behavior and Mechanism of Oxygen-Deficient Anatase TiO ₂ toward Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 3061-3069.	4.0	26
53	Sb2S3@PPy Coaxial Nanorods: A Versatile and Robust Host Material for Reversible Storage of Alkali Metal Ions. Nanomaterials, 2019, 9, 560.	1.9	25
54	Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsystem Technologies, 2014, 20, 201-208.	1.2	22

LIANG HE

#	Article	IF	CITATIONS
55	Progress in Iron Oxides Based Nanostructures for Applications in Energy Storage. Nanoscale Research Letters, 2021, 16, 138.	3.1	19
56	Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. Applied Sciences (Switzerland), 2021, 11, 9082.	1.3	19
57	Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Research, 2018, 11, 3205-3212.	5.8	17
58	Quantitative in situ fracture testing of tin oxide nanowires for lithium ion battery applications. Nano Energy, 2018, 53, 277-285.	8.2	17
59	Research Progress of Biomimetic Memristor Flexible Synapse. Coatings, 2022, 12, 21.	1.2	15
60	Ultrastable Highâ€Energy Onâ€Chip Nickel–Bismuth Microbattery Powered by Crystalline Bi Anode and Ni–Co Hydroxide Cathode. Energy Technology, 2019, 7, 1900144.	1.8	13
61	Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors. Journal of Materiomics, 2019, 5, 303-312.	2.8	13
62	Regulating Latticeâ€Waterâ€Adsorbed Ions to Optimize Intercalation Potential in 3D Prussian Blue Based Multiâ€Ion Microbattery. Small, 2021, 17, e2007791.	5.2	12
63	A Durable Ni–Zn Microbattery with Ultrahighâ€Rate Capability Enabled by In Situ Reconstructed Nanoporous Nickel with Epitaxial Phase. Small, 2021, 17, e2103136.	5.2	11
64	One-step electrodeposited MnxCo1â^'x(OH)2 nanosheet arrays as cathode for asymmetric on-chip micro-supercapacitors. Applied Physics Letters, 2019, 114, 223903.	1.5	10
65	Bilayered microelectrodes based on electrochemically deposited MnO ₂ /polypyrrole towards fast charge transport kinetics for micro-supercapacitors. RSC Advances, 2020, 10, 18245-18251.	1.7	10
66	High-Adhesive Flexible Electrodes and Their Manufacture: A Review. Micromachines, 2021, 12, 1505.	1.4	10
67	Strategies to improve electrocatalytic performance of MoS ₂ -based catalysts for hydrogen evolution reactions. RSC Advances, 2022, 12, 17959-17983.	1.7	10
68	Surface Engineering of Carbon-Based Microelectrodes for High-Performance Microsupercapacitors. Micromachines, 2019, 10, 307.	1.4	8
69	Growth Process and Dielectric Breakdown of Micro Arc Oxidation Coating on AZ31 Mg Alloy Pretreated by Alkali Treatment. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 156-163.	0.3	5
70	Fabrication of a Si-PZT Hybrid XY-Microstage with CNT-Carbon Hinges. IEEJ Transactions on Sensors and Micromachines, 2012, 132, 425-426.	0.0	4
71	The Effect of Ageing Treatment on Shape-Setting and Shape Memory Effect of a NiTi SMA Corrugated Structure. Advances in Materials Science and Engineering, 2020, 2020, 1-11.	1.0	3
72	Microdevices: Carbonâ€MEMSâ€Based Alternating Stacked MoS ₂ @rGOâ€CNT Microâ€Supercapacitor with High Capacitance and Energy Density (Small 26/2017). Small, 2017, 13, .	5.2	2

Liang He

#	Article	IF	CITATIONS
73	Influence of Structural Parameters of Shape Memory Alloy Corrugated Gaskets on the Contact Pressure of Bolted Flange Joints. Advances in Materials Science and Engineering, 2021, 2021, 1-19.	1.0	2
74	Youngâ \in ™s modulus of multi-layer microcantilevers. AlP Advances, 2017, 7, .	0.6	0
75	Highâ€Performance Microbatteries: Recent Advances in Highâ€Performance Microbatteries: Construction, Application, and Perspective (Small 39/2020). Small, 2020, 16, 2070213.	5.2	0