
Bruno Apc Henriques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5937598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 2019, 94, 112-131.	8.3	336
2	Can degradation products released from dental implants affect periâ€implant tissues?. Journal of Periodontal Research, 2018, 53, 1-11.	2.7	192
3	Zirconia surface modifications for implant dentistry. Materials Science and Engineering C, 2019, 98, 1294-1305.	7.3	191
4	The Potential Use of Oyster Shell Waste in New Value-Added By-Product. Resources, 2019, 8, 13.	3.5	104
5	Synergistic interactions between corrosion and wear at titaniumâ€based dental implant connections: A scoping review. Journal of Periodontal Research, 2017, 52, 946-954.	2.7	103
6	Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal–ceramic dental restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 12, 83-92.	3.1	69
7	Tribocorrosion behavior of additive manufactured Ti-6Al-4V biomedical alloy. Tribology International, 2018, 119, 381-388.	5.9	66
8	Tribocorrosion behavior of veneering biomedical PEEK to Ti6Al4V structures. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 123-130.	3.1	65
9	Morse taper dental implants and platform switching: The new paradigm in oral implantology. European Journal of Dentistry, 2016, 10, 148-154.	1.7	62
10	Mechanical and biological behavior of biomedical PEEK matrix composites: A focused review. Materials Letters, 2016, 185, 593-597.	2.6	61
11	Study of the tribocorrosion behaviour of Ti6Al4V – HA biocomposites. Tribology International, 2017, 107, 77-84.	5.9	56
12	Abrasive and sliding wear of resin composites for dental restorations. Tribology International, 2016, 102, 154-160.	5.9	55
13	Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications. Materials and Design, 2016, 108, 488-493.	7.0	53
14	Shear bond strength comparison between conventional porcelain fused to metal and new functionally graded dental restorations after thermal–mechanical cycling. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 194-205.	3.1	52
15	Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 441-447.	3.1	50
16	Tribocorrosion behavior of hot pressed CoCrMo alloys in artificial saliva. Tribology International, 2016, 97, 423-430.	5.9	46
17	Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 212-219.	3.1	44
18	Physicochemical and biological assessment of PEEK composites embedding natural amorphous silica fibers for biomedical applications. Materials Science and Engineering C, 2017, 79, 354-362.	7.3	40

#	Article	IF	CITATIONS
19	Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an integrative review. Clinical Oral Investigations, 2021, 25, 1627-1640.	3.0	39
20	The bending stress distribution in bilayered and graded zirconia-based dental ceramics. Ceramics International, 2016, 42, 11025-11031.	4.8	36
21	Laser surface structuring of Ti6Al4V substrates for adhesion enhancement in Ti6Al4V-PEEK joints. Materials Science and Engineering C, 2017, 79, 177-184.	7.3	36
22	The effect of surface treatment on the friction and wear behavior of dental Y-TZP ceramic against human enamel. Tribology International, 2017, 116, 192-198.	5.9	36
23	A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects. Metals, 2020, 10, 1272.	2.3	34
24	Optimization of bond strength between gold alloy and porcelain through a composite interlayer obtained by powder metallurgy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1415-1420.	5.6	33
25	Hot pressing effect on the shear bond strength of dental porcelain to CoCrMoSi alloy substrates with different surface treatments. Materials Science and Engineering C, 2013, 33, 557-563.	7.3	33
26	Adhesion behavior of conventional and highâ€translucent zirconia: Effect of surface conditioning methods and aging using an experimental methodology. Journal of Esthetic and Restorative Dentistry, 2019, 31, 388-397.	3.8	33
27	Mechanical Strength and Wear of Dental Glass-Ionomer and Resin Composites Affected by Porosity and Chemical Composition. Journal of Bio- and Tribo-Corrosion, 2015, 1, 1.	2.6	32
28	New perspectives for recycling dental zirconia waste resulting from CAD/CAM manufacturing process. Journal of Cleaner Production, 2017, 152, 454-463.	9.3	32
29	An integrative review on the toxicity of Bisphenol A (BPA) released from resin composites used in dentistry. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1942-1952.	3.4	32
30	Mechanical properties of hot pressed CoCrMo alloy compacts for biomedical applications. Materials and Design, 2015, 83, 829-834.	7.0	31
31	Microstructure, Mechanical and Wear Behaviors of Hot-Pressed Copper-Nickel-Based Materials for Diamond Cutting Tools. Journal of Materials Engineering and Performance, 2017, 26, 4046-4055.	2.5	31
32	Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 225-234.	3.1	31
33	Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103516.	3.1	31
34	Shear bond strength of a hot pressed Au–Pd–Pt alloy–porcelain dental composite. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1718-1726.	3.1	30
35	Tribological behavior of zirconia-reinforced glass–ceramic composites in artificial saliva. Tribology International, 2016, 103, 379-387.	5.9	30
36	Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3169-3193.	4.4	30

#	Article	IF	CITATIONS
37	Experimental evaluation of the bond strength between a CoCrMo dental alloy and porcelain through a composite metal–ceramic graded transition interlayer. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 206-214.	3.1	29
38	Cell adhesion evaluation of laser-sintered HAp and 45S5 bioactive glass coatings on micro-textured zirconia surfaces using MC3T3-E1 osteoblast-like cells. Materials Science and Engineering C, 2020, 109, 110492.	7.3	29
39	Evaluation of in vitro properties of 3D micro-macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells. Journal of the European Ceramic Society, 2019, 39, 2545-2558.	5.7	27
40	Influence of preoxidation cycle on the bond strength of CoCrMoSi–porcelain dental composites. Materials Science and Engineering C, 2012, 32, 2374-2380.	7.3	25
41	Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia. Materials Science and Engineering C, 2014, 38, 79-84.	7.3	25
42	Surface damage of dental implant systems and ions release after exposure to fluoride and hydrogen peroxide. Journal of Periodontal Research, 2019, 54, 46-52.	2.7	25
43	The influence of zirconia veneer thickness on the degree of conversion of resin-matrix cements: an integrative review. Clinical Oral Investigations, 2021, 25, 3395-3408.	3.0	25
44	Removal Torque and Biofilm Accumulation at Two Dental Implant–Abutment Joints After Fatigue. International Journal of Oral and Maxillofacial Implants, 2016, 31, 813-819.	1.4	24
45	Effects of poly-ether-ether ketone (PEEK) veneer thickness on the reciprocating friction and wear behavior of PEEK/Ti6Al4V structures in artificial saliva. Wear, 2016, 368-369, 84-91.	3.1	24
46	On the mechanical properties and microstructure of zirconia-reinforced feldspar-based porcelain. Ceramics International, 2016, 42, 14214-14221.	4.8	24
47	Mechanical and thermal properties of hot pressed CoCrMo–porcelain composites developed for prosthetic dentistry. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 103-110.	3.1	23
48	Biomechanical simulation of temporomandibular joint replacement (TMJR) devices: a scoping review of the finite element method. International Journal of Oral and Maxillofacial Surgery, 2018, 47, 1032-1042.	1.5	23
49	Tribocorrosion Behavior of Ti6Al4V Coated with a Bio-absorbable Polymer for Biomedical Applications. Journal of Bio- and Tribo-Corrosion, 2015, 1, 1.	2.6	22
50	Finite element analysis of the residual thermal stresses on functionally gradated dental restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 123-130.	3.1	22
51	Biofilm Affecting the Mechanical Integrity of Implant-Abutment Joints. International Journal of Prosthodontics, 2016, 29, 381-383.	1.7	22
52	Inhibition of multiâ€species oral biofilm by bromide doped bioactive glass. Journal of Biomedical Materials Research - Part A, 2017, 105, 1994-2003.	4.0	22
53	Bond strength enhancement of zirconia-porcelain interfaces via Nd:YAG laser surface structuring. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 161-167.	3.1	22
54	In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104164.	3.1	22

#	Article	IF	CITATIONS
55	The resin-matrix cement layer thickness resultant from the intracanal fitting of teeth root canal posts: an integrative review. Clinical Oral Investigations, 2021, 25, 5595-5612.	3.0	22
56	Thermal residual stresses in bilayered, trilayered and graded dental ceramics. Ceramics International, 2017, 43, 3670-3678.	4.8	21
57	Bioactivity of novel functionally structured titaniumâ€eeramic composites in contact with human osteoblasts. Journal of Biomedical Materials Research - Part A, 2018, 106, 1923-1931.	4.0	21
58	Direct Laser Interference Patterning of Bioceramics: A Short Review. Ceramics, 2019, 2, 578-586.	2.6	21
59	Surface modification of zirconia dental implants by laser texturing. Lasers in Medical Science, 2022, 37, 77-93.	2.1	21
60	Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 547-556.	3.1	20
61	Tribological behaviour of glass-ceramics reinforced by Yttria Stabilized Zirconia. Tribology International, 2016, 102, 361-370.	5.9	20
62	Customâ€made rootâ€analogue zirconia implants: A scoping review on mechanical and biological benefits. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2888-2900.	3.4	20
63	Laser-assisted production of HAp-coated zirconia structured surfaces for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104049.	3.1	20
64	Influence of the processing route of porcelain/Ti–6Al–4V interfaces on shear bond strength. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 327-337.	3.1	19
65	Effect of Zirconia and Alumina Fillers on the Microstructure and Mechanical Strength of Dental Glass Ionomer Cements. Open Dentistry Journal, 2016, 10, 58-68.	0.5	19
66	Bond Strength of Metallic or Ceramic Orthodontic Brackets to Enamel, Acrylic, or Porcelain Surfaces. Materials, 2020, 13, 5197.	2.9	19
67	Carbon fiber-reinforced PEEK in implant dentistry: A scoping review on the finite element method. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 1355-1367.	1.6	19
68	On the synergistic effect of sulfonic functionalization and acidic adhesive conditioning to enhance the adhesion of PEEK to resin-matrix composites. Dental Materials, 2021, 37, 741-754.	3.5	19
69	Influence of interlayer design on residual thermal stresses in trilayered and graded all-ceramic restorations. Materials Science and Engineering C, 2017, 71, 1037-1045.	7.3	18
70	Solubilidade e desintegracao de cimentos a base de agregados minerais contendo diferentes radiopacificadores. Revista Portuguesa De Estomatologia, Medicina Dentaria E Cirurgia Maxilofacial, 2017, 58, .	0.0	18
71	Processing and strengthening of 58S bioactive glassâ€infiltrated titania scaffolds. Journal of Biomedical Materials Research - Part A, 2017, 105, 590-600.	4.0	17
72	Mechanical and chemical analyses across dental porcelain fused to CP titanium or Ti6Al4V. Materials Science and Engineering C, 2014, 37, 76-83.	7.3	16

#	Article	IF	CITATIONS
73	Copper–nickel-based diamond cutting tools: stone cutting evaluation. International Journal of Advanced Manufacturing Technology, 2017, 92, 1339-1348.	3.0	16
74	Wear of Morse taper and external hexagon implant joints after abutment removal. Journal of Materials Science: Materials in Medicine, 2017, 28, 65.	3.6	16
75	Lithium-zirconium silicate glass-ceramics for restorative dentistry: Physicochemical analysis and biological response in contact with human osteoblast. Materialia, 2018, 2, 37-45.	2.7	16
76	Surface modification of glass fiber-reinforcedÂcompositeÂposts to enhance their bond strength to resin-matrix cements: an integrative review. Clinical Oral Investigations, 2022, 26, 95-107.	3.0	16
77	Nickel-cobalt-based materials for diamond cutting tools. International Journal of Advanced Manufacturing Technology, 2018, 95, 1059-1067.	3.0	15
78	Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 655-662.	1.6	15
79	Physicochemical and microscopic characterization of implant-abutment joints. European Journal of Dentistry, 2018, 12, 100-104.	1.7	15
80	Influence of laser texturing on surface features, mechanical properties and low-temperature degradation behavior of 3Y-TZP. Ceramics International, 2020, 46, 3502-3512.	4.8	15
81	Biomechanical analyses of oneâ€piece dental implants composed of titanium, zirconia, <scp>PEEK</scp> , <scp>CFRâ€PEEK</scp> , or <scp>CFRâ€PEEK</scp> : Stresses, strains, and bone remodeling prediction by the finite element method. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 79-88.	3.4	15
82	Color stability of a bisâ€acryl composite resin subjected to polishing, thermocycling, intercalated baths, and immersion in different beverages. Journal of Esthetic and Restorative Dentistry, 2018, 30, 449-456.	3.8	14
83	Application of Kubelka-Munk model on the optical characterization of translucent dental zirconia. Materials Chemistry and Physics, 2021, 258, 123994.	4.0	14
84	On the mechanical properties of monolithic and laminated nano-ceramic resin structures obtained by laser printing. Composites Part B: Engineering, 2018, 141, 76-83.	12.0	13
85	Micro-scale abrasion and sliding wear of zirconium-lithium silicate glass-ceramic and polymer-infiltrated ceramic network used in dentistry. Wear, 2020, 448-449, 203214.	3.1	13
86	PEEK-matrix composites containing different content of natural silica fibers or particulate lithium‑zirconium silicate glass fillers: Coefficient of friction and wear volume measurements. Biotribology, 2020, 24, 100147.	1.9	13
87	Effect of cyanoacrylate tissue adhesive in postoperative palatal pain management: a systematic review. Clinical Oral Investigations, 2021, 25, 3609-3622.	3.0	13
88	Biomechanical behavior of functionally graded S53P4 bioglass-zirconia dental implants: Experimental and finite element analyses. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104565.	3.1	13
89	The influence of inorganic fillers on the light transmission through resin-matrix composites during the light-curing procedure: an integrative review. Clinical Oral Investigations, 2022, 26, 5575-5594.	3.0	13
90	Optimized route for the production of zirconia structures with controlled surface porosity for biomedical applications. Ceramics International, 2018, 44, 12496-12503.	4.8	12

#	Article	IF	CITATIONS
91	Effect of surface and heat treatments on the biaxial flexural strength and phase transformation of a Y-TZP ceramic. Journal of Adhesive Dentistry, 2014, 16, 451-8.	0.5	12
92	Mechanical integrity of cement- and screw-retained zirconium-lithium silicate glass-ceramic crowns to Morse taper implants. Journal of Prosthetic Dentistry, 2018, 120, 721-731.	2.8	11
93	Influence of ns-Nd:YAG laser surface treatment on the tensile bond strength of zirconia to resin-matrix cements. Ceramics International, 2020, 46, 27822-27831.	4.8	11
94	Wear behaviour of tetragonal zirconia polycrystal with a porous surface. International Journal of Refractory Metals and Hard Materials, 2018, 75, 85-93.	3.8	10
95	Mechanical properties of zirconia periodic open cellular structures. Ceramics International, 2019, 45, 15799-15806.	4.8	10
96	Effect of hot pressing variables on the microstructure, relative density and hardness of sterling silver (Ag-Cu alloy) powder compacts. Materials Research, 2014, 17, 664-671.	1.3	9
97	Production and characterization of zirconia structures with a porous surface. Materials Science and Engineering C, 2019, 101, 264-273.	7.3	9
98	Ecological footprint of biomaterials for implant dentistry: is the metal-free practice an eco-friendly shift?. Journal of Cleaner Production, 2019, 213, 723-732.	9.3	9
99	Damping and mechanical behavior of metal-ceramic composites applied to novel dental restorative systems. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 239-247.	3.1	9
100	Wear behavior of dental glass-ceramics: a scoping review on the damage of opposing tooth enamel surfaces. Biotribology, 2020, 21, 100116.	1.9	9
101	Influence of specimens' geometry and materials on the thermal stresses in dental restorative materials during thermal cycling. Journal of Dentistry, 2018, 69, 41-48.	4.1	8
102	Bioactive glass coatings. , 2018, , 103-118.		8
103	Tribocorrosion Behavior of NiTi Biomedical Alloy Processed by an Additive Manufacturing Laser Beam Directed Energy Deposition Technique. Materials, 2022, 15, 691.	2.9	8
104	Micro-scale abrasion wear of novel biomedical PEEK-matrix composites for restorative dentistry. Surface Topography: Metrology and Properties, 2019, 7, 015019.	1.6	7
105	Adhesion of PEEK to resin-matrix composites used in dentistry: a short review on surface modification and bond strength. Journal of Adhesion Science and Technology, 0, , 1-12.	2.6	7
106	Heated distilled water with or without continuous ultrasonic irrigation improves final irrigation efficacy and reduces dentine erosion. Journal of Dentistry, 2020, 103, 103507.	4.1	7
107	Porous Zirconia Blocks for Bone Repair: An Integrative Review on Biological and Mechanical Outcomes. Ceramics, 2022, 5, 161-172.	2.6	7
108	Electrical potential approaches to inhibit biofilm adhesion on titanium implants. Materials Letters, 2019, 255, 126577.	2.6	6

#	Article	IF	CITATIONS
109	Sliding behavior of zirconia porous implant surfaces against bone. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1113-1121.	3.4	6
110	Wear Pathways of Tooth Occlusal Fissure Sealants: An Integrative Review. Biotribology, 2021, 27, 100190.	1.9	6
111	On the hot pressing of coloured high-gold alloys powder compacts applied to the manufacturing of innovative jewellery items. Gold Bulletin, 2013, 46, 117-125.	2.4	5
112	Improving the functional design of dental restorations by adding a composite interlayer in the multilayer system: multi-aspect analysis. Ciência & Tecnologia Dos Materiais, 2015, 27, 36-40.	0.5	5
113	Y-TZP/porcelain graded dental restorations design for improved damping behavior – A study on damping capacity and dynamic Young's modulus. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 219-226.	3.1	5
114	Shear bond strength of PEEK and PEEK-30GF cemented to zirconia or titanium substrates. Journal of Adhesion Science and Technology, 2019, 33, 1090-1101.	2.6	5
115	Improvement of 3Y-TZP aging behavior by means of zirconia-based protective layers. Journal of the European Ceramic Society, 2020, 40, 4315-4322.	5.7	5
116	Effect of dip-coating process on mechanical behavior of 3Y-TZP using different aging-free coatings. Ceramics International, 2021, 47, 6896-6904.	4.8	3
117	Antibiofilm effects of titanium surfaces modified by laser texturing and hotâ€pressing sintering with silver. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1588-1600.	3.4	3
118	A Preliminary Analysis of the Wear Pathways of Sliding Contacts on Temporomandibular Joint Total Joint Replacement Prostheses. Metals, 2021, 11, 685.	2.3	3
119	Degradation of Tooth Occlusal FissureÂand Pit Sealants by Wear and Corrosion Pathways: A Short Review. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	2.6	3
120	Analysis of CoCrMo Surface Oxide Removal by Alumina Blasting before Porcelain Firing in Dental Restorations. Materials Science Forum, 0, 730-732, 9-14.	0.3	2
121	Current state of nanostructured biomaterials for oral and cranio-maxillofacial rehabilitation. , 2018, , 1-12.		2
122	Nanostructured biocompatible ceramics and glass-ceramics. , 2018, , 97-118.		2
123	Enhancing the bone healing on electrical stimuli through the dental implant. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 1041-1051.	1.6	2
124	On the increase of the chemical reactivity of cp titanium and Ti6Al4V at low electrical current in a protein-rich medium. Biomedical Physics and Engineering Express, 2018, 5, 015014.	1.2	1
125	Mechanical and tribological performance of Ni–Co-based binders for cubic boron nitride cutting tools. Journal of Composite Materials, 2020, 54, 2753-2760.	2.4	1
126	Desgaste das próteses da articulação temporomandibular: uma revisão narrativa. , 2021, 3, 61-68.	0.0	1

#	Article	IF	CITATIONS
127	On the production of novel zirconia-reinforced bioactive glassÂporous structures for bone repair. Journal of Materials Science, 2021, 56, 11682-11697.	3.7	1
128	Damage of Dental Amalgam andÂResin-Matrix Composite Surfaces After Exposure to Bleaching Agents: An Integrative Review. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	2.6	1
129	Influence of the Addition of Niâ€Coated Carbon Nanotubes on the Mechanical Properties of Highly Porous Zirconia Cellular Structures. Advanced Engineering Materials, 2022, 24, 2100624.	3.5	1
130	Multidisciplinary treatment of an impacted maxillary canine with immediate implant installation. Journal of Indian Society of Periodontology, 2022, 26, 192.	0.7	1
131	Functionally graded nanostructured biomaterials (FGNB). , 2018, , 159-180.		0
132	Nanostructured biomaterials embedding bioactive molecules. , 2018, , 143-158.		0
133	Damage on tooth enamel after removal of orthodontic adhesive by Arkansas' stone and tungsten carbide burs. Revista Portuguesa De Estomatologia, Medicina Dentaria E Cirurgia Maxilofacial, 0, 58, .	0.0	0
134	Effect of thermal cycling on the shear bond strength of different orthodontic adhesives to enamel. Revista Portuguesa De Estomatologia, Medicina Dentaria E Cirurgia Maxilofacial, 2017, 58, .	0.0	0
135	Degradation of dental implant systems after immersion in therapeutic gels. , 2017, , 5-9.		0
136	Novel strategies for the enhancement of zirconia behavior. , 2017, , 11-13.		0
137	The synergistic effect of platelet-rich fibrin (PRF) and bone substitutes. , 2021, 3, .	0.0	0