Bérénice A Benayoun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5937464/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 2011, 479, 365-371.	13.7	562
2	Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nature Reviews Molecular Cell Biology, 2015, 16, 593-610.	16.1	515
3	H3K4me3 Breadth Is Linked to Cell Identity and Transcriptional Consistency. Cell, 2014, 158, 673-688.	13.5	404
4	Forkhead transcription factors: key players in health and disease. Trends in Genetics, 2011, 27, 224-232.	2.9	267
5	Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Research, 2019, 29, 697-709.	2.4	234
6	The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan. Cell, 2015, 163, 1539-1554.	13.5	200
7	A Platform for Rapid Exploration of Aging and Diseases in a Naturally Short-Lived Vertebrate. Cell, 2015, 160, 1013-1026.	13.5	199
8	Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature, 2019, 574, 553-558.	13.7	187
9	The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress. Cell Metabolism, 2018, 28, 516-524.e7.	7.2	181
10	Inhibition of Pluripotency Networks by the Rb Tumor Suppressor Restricts Reprogramming and Tumorigenesis. Cell Stem Cell, 2015, 16, 39-50.	5.2	166
11	Males Shorten the Life Span of <i>C. elegans</i> Hermaphrodites via Secreted Compounds. Science, 2014, 343, 541-544.	6.0	150
12	Identification of AMPK Phosphorylation Sites Reveals a Network of Proteins Involved in Cell Invasion and Facilitates Large-Scale Substrate Prediction. Cell Metabolism, 2015, 22, 907-921.	7.2	149
13	Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nature Communications, 2017, 8, 14995.	5.8	131
14	A post-translational modification code for transcription factors: sorting through a sea of signals. Trends in Cell Biology, 2009, 19, 189-197.	3.6	109
15	The Transcription Factor Encyclopedia. Genome Biology, 2012, 13, R24.	13.9	103
16	MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nature Communications, 2021, 12, 470.	5.8	97
17	Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle: role of its regulation by the SIRT1 deacetylase. Human Molecular Genetics, 2011, 20, 1673-1686.	1.4	81
18	Widespread sex dimorphism in aging and age-related diseases. Human Genetics, 2020, 139, 333-356.	1.8	76

#	Article	IF	CITATIONS
19	The microbiome: An emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	0.6	76
20	Generic binding sites, generic DNAâ€binding domains: where does specific promoter recognition come from?. FASEB Journal, 2010, 24, 346-356.	0.2	74
21	The mutations and potential targets of the forkhead transcription factor FOXL2. Molecular and Cellular Endocrinology, 2008, 282, 2-11.	1.6	68
22	The transcription factor FOXL2: At the crossroads of ovarian physiology and pathology. Molecular and Cellular Endocrinology, 2012, 356, 55-64.	1.6	67
23	Functional Exploration of the Adult Ovarian Granulosa Cell Tumor-Associated Somatic FOXL2 Mutation p.Cys134Trp (c.402C>G). PLoS ONE, 2010, 5, e8789.	1.1	67
24	The identification and characterization of a FOXL2 response element provides insights into the pathogenesis of mutant alleles. Human Molecular Genetics, 2008, 17, 3118-3127.	1.4	58
25	Positive and negative feedback regulates the transcription factor FOXL2 in response to cell stress: evidence for a regulatory imbalance induced by disease-causing mutations. Human Molecular Genetics, 2009, 18, 632-644.	1.4	56
26	High telomerase is a hallmark of undifferentiated spermatogonia and is required for maintenance of male germline stem cells. Genes and Development, 2015, 29, 2420-2434.	2.7	56
27	Functional evidence implicating FOXL2 in non-syndromic premature ovarian failure and in the regulation of the transcription factor OSR2. Journal of Medical Genetics, 2009, 46, 455-457.	1.5	55
28	Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex- and age-related functional regulation. Nature Aging, 2021, 1, 715-733.	5.3	55
29	Adult ovarian granulosa cell tumor transcriptomics: prevalence of FOXL2 target genes misregulation gives insights into the pathogenic mechanism of the p.Cys134Trp somatic mutation. Oncogene, 2013, 32, 2739-2746.	2.6	49
30	Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Reports, 2019, 52, 86-108.	1.1	42
31	Towards a functional classification of pathogenic FOXL2 mutations using transactivation reporter systems. Human Molecular Genetics, 2009, 18, 3324-3333.	1.4	41
32	Discovery of novel protein partners of the transcription factor FOXL2 provides insights into its physiopathological roles. Human Molecular Genetics, 2012, 21, 3264-3274.	1.4	41
33	Differential functional effects of novel mutations of the transcription factor FOXL2 in BPES patients. Human Mutation, 2008, 29, E123-E131.	1.1	27
34	Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development (Cambridge), 2020, 147, .	1.2	25
35	SUMOylation of the Forkhead Transcription Factor FOXL2 Promotes Its Stabilization/Activation through Transient Recruitment to PML Bodies. PLoS ONE, 2011, 6, e25463.	1.1	24
36	The microbiome: an emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	0.6	23

BéRéNICE A BENAYOUN

#	Article	IF	CITATIONS
37	The new molecular biology of granulosa cell tumors of the ovary. Genome Medicine, 2009, 1, 81.	3.6	22
38	Remodeling of the H3 nucleosomal landscape during mouse aging. Translational Medicine of Aging, 2020, 4, 22-31.	0.6	22
39	The postâ€translational modification profile of the forkhead transcription factor FOXL2 suggests the existence of parallel processive/concerted modification pathways. Proteomics, 2008, 8, 3118-3123.	1.3	21
40	MOTSâ€ ϵ : A Mitochondrialâ€ E ncoded Regulator of the Nucleus. BioEssays, 2019, 41, e1900046.	1.2	19
41	Genome-wide surveillance of transcription errors in response to genotoxic stress. Proceedings of the United States of America, 2021, 118, .	3.3	19
42	FOXL2: At the Crossroads of Female Sex Determination and Ovarian Function. Advances in Experimental Medicine and Biology, 2009, 665, 207-226.	0.8	18
43	Functional genomics of inflamm-aging and immunosenescence. Briefings in Functional Genomics, 2022, 21, 43-55.	1.3	16
44	The forkhead factor FOXL2: A novel tumor suppressor?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1805, 1-5.	3.3	13
45	Epigenetic memory of longevity in Caenorhabditis elegans. Worm, 2012, 1, 77-81.	1.0	13
46	Sex as a Biological Variable in Nutrition Research: From Human Studies to Animal Models. Annual Review of Nutrition, 2022, 42, 227-250.	4.3	13
47	Protocol for analysis of mouse neutrophil NETosis by flow cytometry. STAR Protocols, 2021, 2, 100948.	0.5	11
48	Endogenous Retroviral Elements Generate Pathologic Neutrophils in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1019-1034.	2.5	10
49	NHR-8 and P-glycoproteins uncouple xenobiotic resistance from longevity in chemosensory C. elegans mutants. ELife, 2021, 10, .	2.8	8
50	Aging Epigenetics. , 2018, , 3-32.		7
51	A Regulatory Domain Is Required for Foxn4 Activity During Retinogenesis. Journal of Molecular Neuroscience, 2012, 46, 315-323.	1.1	6
52	Computational inference of a genomic pluripotency signature in human and mouse stem cells. Biology Direct, 2016, 11, 47.	1.9	5
53	Measuring Phagocytosis in Bone Marrow-Derived Macrophages and Peritoneal Macrophages with Aging. Methods in Molecular Biology, 2020, 2144, 161-170.	0.4	4
54	Protocol for isolation of adult mouse ear pinnae-derived primary fibroblasts. STAR Protocols, 2021, 2, 100406.	0.5	2

#	Article	IF	CITATIONS
55	Time isn't kind to female T cells. Nature Aging, 2022, 2, 189-191.	5.3	2
56	IMMUNITY AND AGING—THE HUMAN FACE. Innovation in Aging, 2019, 3, S768-S768.	0.0	0
57	SEX-DIMORPHISM IN THE GENOMIC REGULATION OF AGING. Innovation in Aging, 2019, 3, S768-S769.	0.0	0
58	INVESTIGATING THE ROLE OF AHR IN MEDIATING SEX DIFFERENCES OF AGING MACROPHAGES. Innovation in Aging, 2019, 3, S836-S836.	0.0	0
59	Special issue on "Molecular genetics of aging and longevity†a critical time in the field of geroscience. Human Genetics, 2020, 139, 275-276.	1.8	Ο
60	A multiomic atlas for the exploration of healthy aging in human monocytes. Nature Aging, 2021, 1, 19-21.	5.3	0