Tao Zhu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/59374/tao-zhu-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,420 120 20 33 g-index h-index citations papers 1,916 131 3.7 4.95 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
120	Eccentric behaviour of square CFST columns strengthened using square steel tube and high-performance concrete jackets. <i>Engineering Structures</i> , 2022 , 253, 113772	4.7	1
119	TSVD Regularization-Parameter Selection Method Based on Wilson-Land Its Application to Vertical Wheel-Rail Force Identification of Rail Vehicles. <i>Shock and Vibration</i> , 2022 , 2022, 1-19	1.1	
118	Compound self-heating strategies and multi-objective optimization for lithium-ion batteries at low temperature. <i>Applied Thermal Engineering</i> , 2021 , 186, 116158	5.8	10
117	Enrichment and Separation of Methane Gas by Vacuum Pressure Swing Adsorption. <i>Adsorption Science and Technology</i> , 2021 , 2021, 1-12	3.6	0
116	Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles. <i>Energy</i> , 2021 , 221, 119851	7.9	17
115	Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting. <i>Applied Energy</i> , 2021 , 292, 116932	10.7	12
114	Research on Calculation Method for Maximum Mean Acceleration in Longitudinal Train Collision. <i>Shock and Vibration</i> , 2021 , 2021, 1-16	1.1	
113	Axial behaviour of square stub CFST columns strengthened with square steel tube and HPC jacket. Journal of Constructional Steel Research, 2021 , 186, 106896	3.8	2
112	Inversion prediction of back propagation neural network in collision analysis of anti-climbing device. <i>Advances in Mechanical Engineering</i> , 2020 , 12, 168781402092205	1.2	2
111	Gas-phase elemental mercury removal by nano-ceramic material. <i>Nanomaterials and Nanotechnology</i> , 2020 , 10, 184798041989975	2.9	0
110	A comparative study of fatigue estimation methods for single-spot and multispot welds. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2020 , 43, 1142-1158	3	1
109	Study on Short Fatigue Crack Behaviour of LZ50 Steel Under Non-Proportional Loading. <i>Materials</i> , 2020 , 13,	3.5	3
108	Dynamic Evolution of Knowledge Sharing Behavior among Enterprises in the Cluster Innovation Network Based on Evolutionary Game Theory. <i>Sustainability</i> , 2020 , 12, 75	3.6	15
107	Axial behaviour of slender concrete-filled steel tube square columns strengthened with square concrete-filled steel tube jackets. <i>Advances in Structural Engineering</i> , 2020 , 23, 1074-1086	1.9	9
106	Sizing a battery-supercapacitor energy storage system with battery degradation consideration for high-performance electric vehicles. <i>Energy</i> , 2020 , 208, 118336	7.9	8
105	Nonlinear Spring-Mass-Damper Modeling and Parameter Estimation of Train Frontal Crash Using CLGAN Model. <i>Shock and Vibration</i> , 2020 , 2020, 1-19	1.1	0
104	Effects of MO (M=Mn, Cu, Sb, La) on VMolle/Ti selective catalytic reduction catalysts. <i>Journal of Rare Earths</i> , 2020 , 38, 157-166	3.7	13

(2017-2019)

103	Train collision dynamic model considering longitudinal and vertical coupling. <i>Advances in Mechanical Engineering</i> , 2019 , 11, 168781401882396	1.2	5	
102	Optimization research on S-N curve of ring welding structure based on structural stress method. Fatigue and Fracture of Engineering Materials and Structures, 2019 , 42, 2207-2219	3	1	
101	Experimental Study and Life Prediction of Bolt Loosening Life under Variable Amplitude Vibration. <i>Shock and Vibration</i> , 2019 , 2019, 1-8	1.1	4	
100	Advanced oxidation technology for H2S odor gas using non-thermal plasma. <i>Plasma Science and Technology</i> , 2018 , 20, 054007	1.5	7	
99	Evaluation and sensitivity analysis for economical operation of active distribution network. <i>IEEJ Transactions on Electrical and Electronic Engineering</i> , 2018 , 13, 715-724	1	2	
98	Effects of O2 Feeding Strategy and Over-Fire Air Configuration on Oxy-Fuel Combustion Characteristics in an Opposed Wall-Fired Utility Boiler. <i>Energy & Description</i> 2018, 32, 2479-2489	4.1	5	
97	The mechanism for the coupler and draft gear and its influence on safety during a train collision. <i>Vehicle System Dynamics</i> , 2018 , 56, 1375-1393	2.8	11	
96	Learning enhanced differential evolution for tracking optimal decisions in dynamic power systems. <i>Applied Soft Computing Journal</i> , 2018 , 67, 812-821	7.5	11	
95	A Survey of Data Semantization in Internet of Things. Sensors, 2018, 18,	3.8	36	
94	Life cycle carbon emission modelling of coal-fired power: Chinese case. <i>Energy</i> , 2018 , 162, 841-852	7.9	43	
93	A survey of RDF management technologies and benchmark datasets. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2018 , 9, 1693-1704	3.7	14	
92	Social relationship for physical objects. <i>International Journal of Distributed Sensor Networks</i> , 2018 , 14, 155014771875496	1.7	4	
91	Dynamic constitutive relation of 5083P-O aluminium alloy and its influence on energy-absorbing structure. <i>Advances in Mechanical Engineering</i> , 2018 , 10, 168781401880733	1.2	1	
90	Axial Behaviour of Slender RC Circular Columns Strengthened with Circular CFST Jackets. <i>Advances in Civil Engineering</i> , 2018 , 2018, 1-11	1.3	3	
89	Study on the influence factors of impact ejection performance for flexible airbag. <i>Advances in Mechanical Engineering</i> , 2018 , 10, 168781401880733	1.2		
88	Bond Behavior of Wet-Bonded Carbon Fiber-Reinforced Polymer-Concrete Interface Subjected to Moisture. <i>International Journal of Polymer Science</i> , 2018 , 2018, 1-11	2.4	8	
87	Assessment of numerical integration algorithms for nonlinear vibration of railway vehicles. <i>Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit</i> , 2017 , 231, 729-739	1.4	1	
86	Cyberlogic Paves the Way From Cyber Philosophy to Cyber Science. <i>IEEE Internet of Things Journal</i> , 2017 , 4, 783-790	10.7	9	

85	Co-expression of GR79 EPSPS and GAT yields herbicide-resistant cotton with low glyphosate residues. <i>Plant Biotechnology Journal</i> , 2017 , 15, 1622-1629	11.6	18
84	Solving online dynamic time-linkage problems under unreliable prediction. <i>Applied Soft Computing Journal</i> , 2017 , 56, 702-716	7.5	6
83	Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. <i>Science China Life Sciences</i> , 2017 , 60, 524-527	8.5	39
82	Comparison and assessment of time integration algorithms for nonlinear vibration systems. <i>Journal of Central South University</i> , 2017 , 24, 1090-1097	2.1	2
81	An Improved Approach to Estimate Methane Emissions from Coal Mining in China. <i>Environmental Science & Environmental &</i>	10.3	20
80	Limitations of Load Balancing Mechanisms for N-Tier Systems in the Presence of Millibottlenecks 2017 ,		5
79	GFF3sort: a novel tool to sort GFF3 files for tabix indexing. <i>BMC Bioinformatics</i> , 2017 , 18, 482	3.6	1
7 ⁸	The Millibottleneck Theory of Performance Bugs, and Its Experimental Verification 2017 ,		6
77	Confined-Space Mechanism Inspired by the Ingenious Fabrication of a Ffster Resonance Energy Transfer System as a Ratiometric Probe for Ag+ Recognition. <i>Industrial & Discourse Ingineering Chemistry Research</i> , 2017 , 56, 10591-10596	3.9	5
76	Identification of an operon involved in fluoride resistance in Enterobacter cloacae FRM. <i>Scientific Reports</i> , 2017 , 7, 6786	4.9	8
75	CottonFGD: an integrated functional genomics database for cotton. <i>BMC Plant Biology</i> , 2017 , 17, 101	5.3	123
74	An online incremental orthogonal component analysis method for dimensionality reduction. <i>Neural Networks</i> , 2017 , 85, 33-50	9.1	8
73	An architecture for aggregating information from distributed data nodes for industrial internet of things. <i>Computers and Electrical Engineering</i> , 2017 , 58, 337-349	4.3	46
72	Large-scale super-Gaussian sources separation using Fast-ICA with rational nonlinearities. International Journal of Adaptive Control and Signal Processing, 2017, 31, 379-397	2.8	5
71	milliScope: A Fine-Grained Monitoring Framework for Performance Debugging of n-Tier Web Services 2017 ,		10
70	The Analysis of Natural Lighting Simulation and Study on Energy Saving in Cigarette Factory. <i>Procedia Engineering</i> , 2017 , 205, 895-901		3
69	Activation of ABA Receptors Gene Is Positively Correlated with Cotton Drought Tolerance in Transgenic. <i>Frontiers in Plant Science</i> , 2017 , 8, 1453	6.2	21
68	An Optimized Energy Management Strategy for Preheating Vehicle-Mounted Li-ion Batteries at Subzero Temperatures. <i>Energies</i> , 2017 , 10, 243	3.1	27

(2015-2017)

67	Comparison Study of Two Semi-Active Hybrid Energy Storage Systems for Hybrid Electric Vehicle Applications and Their Experimental Validation. <i>Energies</i> , 2017 , 10, 279	3.1	18
66	Research on the Optimal Charging Strategy for Li-Ion Batteries Based on Multi-Objective Optimization. <i>Energies</i> , 2017 , 10, 709	3.1	27
65	Internet Use and Its Impact on Individual Physical Health. <i>IEEE Access</i> , 2016 , 4, 5135-5142	3.5	13
64	A design of novel damping controller combined with PID for nanopositioners 2016 ,		1
63	A Swarm Intelligence Algorithm Inspired by Twitter. Lecture Notes in Computer Science, 2016, 344-351	0.9	2
62	GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). <i>Scientific Reports</i> , 2016 , 6, 35040	4.9	75
61	Bt protein expression in the transgenic insect-resistant cotton in China. Science Bulletin, 2016, 61, 1555-	1:5:56	3
60	Special dynamic behavior of an aluminum alloy and effects on energy absorption in train collisions. <i>Advances in Mechanical Engineering</i> , 2016 , 8, 168781401664952	1.2	6
59	Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems. <i>Energy</i> , 2016 , 97, 359-368	7.9	86
58	MPSO-Based Model of Train Operation Adjustment. <i>Procedia Engineering</i> , 2016 , 137, 114-123		4
57	Microenvironment-Sensitive Fluorescent Dyes for Recognition of Serum Albumin in Urine and Imaging in Living Cells. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 527-533	3.9	47
56	Forecast of Train Delay Propagation Based on Max-Plus Algebra Theory. <i>Lecture Notes in Electrical Engineering</i> , 2016 , 661-672	0.2	1
55	Orthogonal component analysis: A fast dimensionality reduction algorithm. <i>Neurocomputing</i> , 2016 , 177, 136-146	5.4	3
54	Effect of Temperature Variation on Bond Characteristics between CFRP and Steel Plate. <i>International Journal of Polymer Science</i> , 2016 , 2016, 1-8	2.4	16
53	A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor. <i>Mathematical Problems in Engineering</i> , 2016 , 2016, 1-7	1.1	
52	Progress in genome sequencing will accelerate molecular breeding in cotton (Gossypium spp.). <i>3 Biotech</i> , 2016 , 6, 217	2.8	13
51	STLF: Spatial-temporal-logical knowledge representation and object mapping framework 2016 ,		4
50	Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation. <i>Journal of Sound and Vibration</i> , 2015 , 358, 48-73	3.9	55

0.2

9.1

12

Organization. Lecture Notes in Electrical Engineering, 2014, 547-554

Materials Science and Technology, **2013**, 29, 673-677

Effect of Ball Scribing on Magnetic Barkhausen Noise of Grain-oriented Electrical Steel. Journal of

33

(2011-2013)

Frequency of intron loss correlates with processed pseudogene abundance: a novel strategy to test the reverse transcriptase model of intron loss. <i>BMC Biology</i> , 2013 , 11, 23	7.3	23	
2013,		2	
Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. <i>Applied Energy</i> , 2013 , 111, 383-393	10.7	33	
Electric Load Transient Recognition With a Cluster Weighted Modeling Method. <i>IEEE Transactions on Smart Grid</i> , 2013 , 4, 2182-2190	10.7	2	
Performance Overhead among Three Hypervisors: An Experimental Study Using Hadoop Benchmarks 2013 ,		31	
Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process 2013 ,		1	
Impact of Wind Farms on the Voltage of the Grid Integrated under the Ramp Changing Wind Speed. <i>Advanced Materials Research</i> , 2013 , 860-863, 419-423	0.5		
Study on the Interprovincial Emission Factor of Chinese Coal Mine Methane. <i>Applied Mechanics and Materials</i> , 2013 , 295-298, 3354-3358	0.3	O	
Mechanisms of intron loss and gain in the fission yeast Schizosaccharomyces. PLoS ONE, 2013, 8, e616	833.7	21	
Non-destructive Detection on the Egg Crack Based on Wavelet Transform. <i>IERI Procedia</i> , 2012 , 2, 372-3	382	4	
Nonthermal Plasma Hybrid Technology for VOCs Decomposition. <i>Advanced Materials Research</i> , 2012 , 549, 238-241	0.5	1	
Production of Gaseous Fuel from High-Ash Tailings by Pyrolysis. <i>Advanced Materials Research</i> , 2012 , 550-553, 458-463	0.5		
Identification of the transcriptional regulator NcrB in the nickel resistance determinant of Leptospirillum ferriphilum UBK03. <i>PLoS ONE</i> , 2011 , 6, e17367	3.7	17	
Preliminary Experimental Investigation on MHD Power Generation Using Seeded Supersonic Argon Flow as Working Fluid. <i>Chinese Journal of Aeronautics</i> , 2011 , 24, 701-708	3.7	2	
VOCs Decomposition via Modified Ferroelectric Packed Bed Dielectric Barrier Discharge Plasma. <i>IEEE Transactions on Plasma Science</i> , 2011 , 39, 1695-1700	1.3	12	
Research on Liquid Fuels and Chemicals of Waste Blends Copyrolysis. <i>Advanced Materials Research</i> , 2011 , 391-392, 1455-1458	0.5		
Object Tracking Using Probabilistic Principal Component Analysis Based on Particle Filtering			
Framework. Advanced Materials Research, 2011 , 341-342, 790-797	0.5	3	
	Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Applied Energy, 2013, 111, 383-393 Electric Load Transient Recognition With a Cluster Weighted Modeling Method. IEEE Transactions on Smart Grid, 2013, 4, 2182-2190 Performance Overhead among Three Hypervisors: An Experimental Study Using Hadoop Benchmarks 2013, Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process 2013, Impact of Wind Farms on the Voltage of the Grid Integrated under the Ramp Changing Wind Speed. Advanced Materials Research, 2013, 860-863, 419-423 Study on the Interprovincial Emission Factor of Chinese Coal Mine Methane. Applied Mechanics and Materials, 2013, 295-298, 3354-3358 Mechanisms of intron loss and gain in the fission yeast Schizosaccharomyces. PLoS ONE, 2013, 8, e616 Non-destructive Detection on the Egg Crack Based on Wavelet Transform. IERI Procedia, 2012, 2, 372-210, 2012, 249, 238-241 Production of Gaseous Fuel from High-Ash Tailings by Pyrolysis. Advanced Materials Research, 2012, 550-553, 458-463 Identification of the transcriptional regulator NcrB in the nickel resistance determinant of Leptospirillum ferriphilum UBK03. PLoS ONE, 2011, 6, e17367 Preliminary Experimental Investigation on MHD Power Generation Using Seeded Supersonic Argon Flow as Working Fluid. Chinese Journal of Aeronautics, 2011, 24, 701-708 VOCs Decomposition via Modified Ferroelectric Packed Bed Dielectric Barrier Discharge Plasma. IEEE Transactions on Plasma Science, 2011, 39, 1695-1700 Research on Liquid Fuels and Chemicals of Waste Blends Copyrolysis. Advanced Materials Research,	2013, Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Applied Energy, 2013, 111, 383-393 Electric Load Transient Recognition With a Cluster Weighted Modeling Method. IEEE Transactions on Smart Grid, 2013, 4, 2182-2190 Performance Overhead among Three Hypervisors: An Experimental Study Using Hadoop Benchmarks 2013, Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process 2013. Impact of Wind Farms on the Voltage of the Grid Integrated under the Ramp Changing Wind Speed. Advanced Materials Research, 2013, 860-863, 419-423 Study on the Interprovincial Emission Factor of Chinese Coal Mine Methane. Applied Mechanics and Materials, 2013, 295-298, 3354-3358 Mechanisms of Intron loss and gain in the fission yeast Schizosaccharomyces. PLoS ONE, 2013, 8, e6168337 Non-destructive Detection on the Egg Crack Based on Wavelet Transform. IERI Procedia, 2012, 2, 372-382 Nonthermal Plasma Hybrid Technology for VOCs Decomposition. Advanced Materials Research, 2012, 549, 238-241 Production of Gaseous Fuel from High-Ash Tallings by Pyrolysis. Advanced Materials Research, 2012, 550-553, 458-463 Identification of the transcriptional regulator NcrB in the nickel resistance determinant of Leptospirillum ferriphilum UBK03. PLoS ONE, 2011, 6, e17367 Preliminary Experimental Investigation on MHD Power Generation Using Seeded Supersonic Argon Flow as Working Fluid. Chinese Journal of Aeronautics, 2011, 24, 701-708 VOCs Decomposition via Modified Ferroelectric Packed Bed Dielectric Barrier Discharge Plasma. IEEE Transactions on Plasma Science, 2011, 39, 1695-1700 Research on Liquid Fuels and Chemicals of Waste Blends Copyrolysis. Advanced Materials Research, 2011, 391-392, 1455-1458	Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Applied Energy, 2013, 111, 383-393 Electric Load Transient Recognition With a Cluster Weighted Modeling Method. IEEE Transactions on Smart Grid, 2013, 4, 2182-2190 Performance Overhead among Three Hypervisors: An Experimental Study Using Hadoop Benchmarks 2013, Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process 2013, Impact of Wind Farms on the Voltage of the Grid Integrated under the Ramp Changing Wind Speed. Advanced Materials Research, 2013, 860-863, 419-423 Study on the Interprovincial Emission Factor of Chinese Coal Mine Methane. Applied Mechanics and Materials, 2013, 295-298, 3354-3358 Mechanisms of intron loss and gain in the fission yeast Schizosaccharomyces. PLoS ONE, 2013, 8, e616833-7 Non-destructive Detection on the Egg Crack Based on Wavelet Transform. IERI Procedia, 2012, 2, 372-382 Nonthermal Plasma Hybrid Technology for VOCs Decomposition. Advanced Materials Research, 2012, 549, 238-241 Production of Gaseous Fuel from High-Ash Tailings by Pyrolysis. Advanced Materials Research, 2012, 549, 238-241 Identification of the transcriptional regulator NcrB in the nickel resistance determinant of Leptospirillum ferriphilum UBRO3. PLoS ONE, 2011, 6, e17367 Preliminary Experimental Investigation on MHD Power Generation Using Seeded Supersonic Argon Plasma Science, 2011, 39, 1695-1700 Research on Liquid Fuels and Chemicals of Waste Blends Copyrolysis. Advanced Materials Research, 2011, 39, 1495-1458

13	Perpendicular Magnetic Anisotropy in the CoFeB/Pt Multilayers by Extraordinary Hall Effect. <i>Materials Science Forum</i> , 2011 , 694, 773-777	0.4	
12	Material Removal Mechanisms of Electric Discharge Milling Conductive Ceramic. <i>Advanced Materials Research</i> , 2011 , 308-310, 1746-1750	0.5	5
11	Study on the Mechanism of Ultrasonic Vibration Aided Electrical Discharge Milling in Deionized Water. <i>Applied Mechanics and Materials</i> , 2011 , 130-134, 1344-1347	0.3	1
10	Non-destructive Line Detection of Salted Egg Based on Image Processing and BP Neural Network. <i>Communications in Computer and Information Science</i> , 2011 , 481-488	0.3	1
9	Equilibrium and Kinetic Studies of Aqueous Cesium(I) Ions Biosorption by Pseudomonas alcaligenes Biomass as a Low-Cost Natural Biosorbent. <i>Advanced Materials Research</i> , 2010 , 171-172, 53-56	0.5	
8	VOCs Decomposition Using Multiple Catalysis in Non-Thermal Plasma Processing. <i>Advanced Materials Research</i> , 2010 , 152-153, 973-977	0.5	
7	Wear Rate Predication for Steel Based on Regression Analysis. <i>Advanced Materials Research</i> , 2010 , 126-128, 965-969	0.5	1
6	Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 2010 , 175, 1090-5	12.8	76
5	Synergistic effect of catalyst for oxidation removal of toluene. <i>Journal of Hazardous Materials</i> , 2009 , 165, 1258-60	12.8	33
4	A novel rate control scheme for H.264/SVC base layer 2009 ,		1
3	Disodium diaquabis(malonato-20,0?)nickelate(II) dihydrate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, m409-m410		2
2	Regulating expression of pyruvate kinase in Bacillus subtilis for control of growth rate and formation of acidic byproducts. <i>Biotechnology Progress</i> , 2006 , 22, 1451-5	2.8	7
1	Principle and Application of Vibrating Suction Method 2006		10