
Sean A Rands

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5936772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of petal transpiration in floral humidity generation. Planta, 2022, 255, 78.	3.2	8
2	Flower sharing and pollinator health: a behavioural perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210157.	4.0	5
3	Neonicotinoids disrupt memory, circadian behaviour and sleep. Scientific Reports, 2021, 11, 2061.	3.3	30
4	Phylogenetic signal in floral temperature patterns. BMC Research Notes, 2021, 14, 39.	1.4	4
5	Phylogenetically-controlled correlates of primate blinking behaviour. PeerJ, 2021, 9, e10950.	2.0	2
6	Floral infrared emissivity estimates using simple tools. Plant Methods, 2021, 17, 23.	4.3	7
7	The Power of Drosophila melanogaster for Modeling Neonicotinoid Effects on Pollinators and Identifying Novel Mechanisms. Frontiers in Physiology, 2021, 12, 659440.	2.8	15
8	Behavioural synchrony between fallow deer Dama dama is related to spatial proximity. Bmc Ecology and Evolution, 2021, 21, 79.	1.6	6
9	A commentary on: â€~Divergence in floral scent and morphology, but not thermogenic traits, associated with pollinator shift in two brood-site-mimicking Typhonium (Araceae) species'. Annals of Botany, 2021, 128, i-ii.	2.9	0
10	Bumblebees can detect floral humidity. Journal of Experimental Biology, 2021, 224, .	1.7	16
11	Using radio frequency identification and locomotor activity monitoring to assess sleep, locomotor, and foraging rhythmicity in bumblebees. STAR Protocols, 2021, 2, 100598.	1.2	2
12	Raspberry Pi nest cameras: An affordable tool for remote behavioral and conservation monitoring of bird nests. Ecology and Evolution, 2021, 11, 14585-14597.	1.9	9
13	The Neonicotinoid Insecticide Imidacloprid Disrupts Bumblebee Foraging Rhythms and Sleep. IScience, 2020, 23, 101827.	4.1	24
14	Floral temperature patterns can function as floral guides. Arthropod-Plant Interactions, 2020, 14, 193-206.	1.1	16
15	Floral Humidity in Flowering Plants: A Preliminary Survey. Frontiers in Plant Science, 2020, 11, 249.	3.6	19
16	Foraging efficiency, social status and body condition in group-living horses and ponies. PeerJ, 2020, 8, e10305.	2.0	9
17	Cross-modal transfer in visual and nonvisual cues in bumblebees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 427-437.	1.6	16
18	The effects of rainfall on plant–pollinator interactions. Arthropod-Plant Interactions, 2019, 13, 561-569.	1.1	96

SEAN A RANDS

#	Article	IF	CITATIONS
19	The evolution of floral guides: using a genetic algorithm to investigate the evolution of floral cue arrangements. Biological Journal of the Linnean Society, 2018, 123, 739-753.	1.6	11
20	Black-headed gulls synchronise their activity with their nearest neighbours. Scientific Reports, 2018, 8, 9978.	3.3	12
21	Bumblebees distinguish floral scent patterns, and can transfer these to corresponding visual patterns. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180661.	2.6	51
22	Reporting of thermography parameters in biology: a systematic review of thermal imaging literature. Royal Society Open Science, 2018, 5, 181281.	2.4	37
23	Bumblebees can discriminate between scent-marks deposited by conspecifics. Scientific Reports, 2017, 7, 43872.	3.3	32
24	Colour as a backup for scent in the presence of olfactory noise: testing the efficacy backup hypothesis using bumblebees (<i>Bombus terrestris</i>). Royal Society Open Science, 2017, 4, 170996.	2.4	46
25	Nectar discovery speeds and multimodal displays: assessing nectar search times in bees with radiating and non-radiating guides. Evolutionary Ecology, 2017, 31, 899-912.	1.2	24
26	The diversity of floral temperature patterns, and their use by pollinators. ELife, 2017, 6, .	6.0	58
27	Leaving safety to visit a feeding site: is it optimal to hesitate while exposed?. Royal Society Open Science, 2017, 4, 160910.	2.4	4
28	Flower Iridescence Increases Object Detection in the Insect Visual System without Compromising Object Identity. Current Biology, 2016, 26, 802-808.	3.9	43
29	Consensus and experience trump leadership, suppressing individual personality during social foraging. Science Advances, 2016, 2, e1600892.	10.3	53
30	Nearest-neighbour clusters as a novel technique for assessing group associations. Royal Society Open Science, 2015, 2, 140232.	2.4	5
31	Dominance rank is associated with body condition in outdoor-living domestic horses (Equus) Tj ETQq1 1 0.7843	814 rgBT /(1.9	Overlock 10
32	Assessing the seasonal prevalence and risk factors for nuchal crest adiposity in domestic horses and ponies using the Cresty Neck Score. BMC Veterinary Research, 2015, 11, 13.	1.9	29
33	We must consider dynamic changes in behavior in social networks and conduct manipulations: comment on Pinter-Wollman et al Behavioral Ecology, 2014, 25, 259-260.	2.2	3
34	Obesity prevalence and associated risk factors in outdoor living domestic horses and ponies. PeerJ, 2014, 2, e299.	2.0	96
35	Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology. PeerJ, 2014, 2, e269.	2.0	13
36	Red deer synchronise their activity with close neighbours. PeerJ, 2014, 2, e344.	2.0	18

SEAN A RANDS

#	Article	IF	CITATIONS
37	The influence of pigmentation patterning on bumblebee foraging from flowers of Antirrhinum majus. Die Naturwissenschaften, 2013, 100, 249-256.	1.6	20
38	Mobbing and sitting tight at the nest as methods of avoiding brood parasitism. Interface Focus, 2012, 2, 217-225.	3.0	9
39	Using Physical and Computer Simulations of Collective Behaviour as an Introduction to Modelling Concepts for Applied Biologists. Bioscience Education, 2012, 19, 1-10.	0.4	Ο
40	Social structure, vigilance and behaviour of plains zebra (Equus burchellii): a 5-year case study of individuals living on a managed wildlife reserve. Acta Theriologica, 2012, 57, 111-120.	1.1	11
41	A Technique for Measuring Petal Gloss, with Examples from the Namaqualand Flora. PLoS ONE, 2012, 7, e29476.	2.5	15
42	State-dependent foraging rules for social animals in selfish herds. , 2011, , 523-537.		0
43	Approximating Optimal Behavioural Strategies Down to Rules-of-Thumb: Energy Reserve Changes in Pairs of Social Foragers. PLoS ONE, 2011, 6, e22104.	2.5	13
44	Field Margins, Foraging Distances and Their Impacts on Nesting Pollinator Success. PLoS ONE, 2011, 6, e25971.	2.5	48
45	The Dynamics of Honesty: Modelling the Growth of Costly, Sexually-Selected Ornaments. PLoS ONE, 2011, 6, e27174.	2.5	11
46	Floral epidermal structure and flower orientation: getting to grips with awkward flowers. Arthropod-Plant Interactions, 2011, 5, 279-285.	1.1	32
47	Using an Animal Group Vigilance Practical Session to give Learners a â€~Heads-up' to Problems in Experimental Design. Bioscience Education, 2011, 17, 1-6.	0.4	1
48	The Effects of Dominance on Leadership and Energetic Gain: A Dynamic Game between Pairs of Social Foragers. PLoS Computational Biology, 2011, 7, e1002252.	3.2	15
49	Inclusion of policies on ethical standards in animal experiments in biomedical science journals. Journal of the American Association for Laboratory Animal Science, 2011, 50, 901-3.	1.2	12
50	Considering Adaptation and the "Function―of Traits in the Classroom, Using Wiki Tools. Evolution: Education and Outreach, 2010, 3, 633-640.	0.8	1
51	Effects of pollinator density-dependent preferences on field margin visitations in the midst of agricultural monocultures: A modelling approach. Ecological Modelling, 2010, 221, 1310-1316.	2.5	35
52	Unusual honey pot building behaviour in captively reared bumble bees Bombus terrestris. Journal of Apicultural Research, 2010, 49, 345-347.	1.5	0
53	Group-movement â€~initiation' and state-dependent decision-making. Behavioural Processes, 2010, 84, 668-670.	1.1	8
54	Self-Improvement for Team-Players: The Effects of Individual Effort on Aggregated Group Information. PLoS ONE, 2010, 5, e11705.	2.5	16

SEAN A RANDS

#	Article	lF	CITATIONS
55	Sexual selection and conditionâ€dependence. Journal of Evolutionary Biology, 2009, 22, 2387-2394.	1.7	67
56	Ethical policies on animal experiments are not compromised by whether a journal is freely accessible or charges for publication. Animal, 2009, 3, 1591-1595.	3.3	4
57	The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Die Naturwissenschaften, 2008, 95, 845-850.	1.6	86
58	The emergence of leaders and followers in foraging pairs when the qualities of individuals differ. BMC Evolutionary Biology, 2008, 8, 51.	3.2	69
59	Quantifying the costs and benefits of protective egg coating in a Chrysomelid beetle. Ecological Entomology, 2008, 33, 484-487.	2.2	6
60	Floral Temperature and Optimal Foraging: Is Heat a Feasible Floral Reward for Pollinators?. PLoS ONE, 2008, 3, e2007.	2.5	59
61	Measurement of mass change in breeding birds: A bibliography and discussion of measurement techniques. Ringing and Migration, 2006, 23, 1-5.	0.4	11
62	THE IMPACT OF PARASITE MANIPULATION AND PREDATOR FORAGING BEHAVIOR ON PREDATOR–PREY COMMUNITIES. Ecology, 2006, 87, 2832-2841.	3.2	85
63	Explaining individual variation in patterns of mass loss in breeding birds. Theoretical Biology and Medical Modelling, 2006, 3, 20.	2.1	9
64	Social foraging and dominance relationships: the effects of socially mediated interference. Behavioral Ecology and Sociobiology, 2006, 60, 572-581.	1.4	50
65	Statistical measures for defining an individual's degree of independence within state-dependent dynamic games. BMC Evolutionary Biology, 2006, 6, 81.	3.2	6
66	State–dependent foraging rules for social animals in selfish herds. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2613-2620.	2.6	63
67	Optimal parasite infection strategies: a state-dependent approach. International Journal for Parasitology, 2004, 34, 813-821.	3.1	31
68	Spontaneous emergence of leaders and followers in foraging pairs. Nature, 2003, 423, 432-434.	27.8	296
69	Separating the effects of predation risk and interrupted foraging upon mass changes in the blue titParus caeruleus. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1783-1790.	2.6	32
70	Prey Processing in Central Place Foragers. Journal of Theoretical Biology, 2000, 202, 161-174.	1.7	20