Wei Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5936673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the kinase-inhibitor fragment interaction space facilitates the discovery of kinase inhibitor overcoming resistance by mutations. Briefings in Bioinformatics, 2022, 23, .	6.5	5
2	Conformational adjustment overcomes multiple drug-resistance mutants of tropomyosin receptor kinase. European Journal of Medicinal Chemistry, 2022, 237, 114406.	5.5	3
3	Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Topics in Current Chemistry, 2021, 379, 23.	5.8	6
4	Discovery of Next-Generation Tropomyosin Receptor Kinase Inhibitors for Combating Multiple Resistance Associated with Protein Mutation. Journal of Medicinal Chemistry, 2021, 64, 15503-15514.	6.4	22
5	Catalase Inhibitors with Dual Proâ€Oxidant Effect as New Therapeutic Agents in Castrationâ€Resistant Prostate Cancer. Advanced Therapeutics, 2021, 4, 2000164.	3.2	1
6	Synthesis and biological evaluation of new MET inhibitors with 1,6-naphthyridinone scaffold. European Journal of Medicinal Chemistry, 2020, 185, 111803.	5.5	22
7	Design and synthesis of novel phthalazinone derivatives as potent poly(ADP-ribose)polymerase 1 inhibitors. Future Medicinal Chemistry, 2020, 12, 1691-1707.	2.3	5
8	Structure–activity relationship study of novel quinazoline-based 1,6-naphthyridinones as MET inhibitors with potent antitumor efficacy. European Journal of Medicinal Chemistry, 2020, 208, 112785.	5.5	7
9	Auto In Silico Ligand Directing Evolution to Facilitate the Rapid and Efficient Discovery of Drug Lead. IScience, 2020, 23, 101179.	4.1	22
10	Grignard Reagent Utilization Enables a Practical and Scalable Construction of 3-Substituted 5-Chloro-1,6-naphthyridin-4-one Derivatives. Molecules, 2020, 25, 5667.	3.8	2
11	Efficient Arylation of 2,7-Naphthyridin-1(2H)-one with Diaryliodonium Salts and Discovery of a New Selective MET/AXL Kinase Inhibitor. ACS Combinatorial Science, 2020, 22, 457-467.	3.8	11
12	Discovery of 1,6-naphthyridinone-based MET kinase inhibitor bearing quinoline moiety as promising antitumor drug candidate. European Journal of Medicinal Chemistry, 2020, 192, 112174.	5.5	16
13	Discovery of N-substituted-3-phenyl-1,6-naphthyridinone derivatives bearing quinoline moiety as selective type II c-Met kinase inhibitors against VEGFR-2. Bioorganic and Medicinal Chemistry, 2020, 28, 115555.	3.0	13
14	2,7-naphthyridinone-based MET kinase inhibitors: A promising novel scaffold for antitumor drug development. European Journal of Medicinal Chemistry, 2019, 178, 705-714.	5.5	24
15	Discovery of potent anti-inflammatory 4-(4,5,6,7-tetrahydrofuro[3,2-c]pyridin-2-yl) pyrimidin-2-amines for use as Janus kinase inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 2592-2597.	3.0	7
16	Discovery of 8-Amino-Substituted 2-Phenyl-2,7-Naphthyridinone Derivatives as New c-Kit/VEGFR-2 Kinase Inhibitors. Molecules, 2019, 24, 4461.	3.8	8
17	Direct Sulfide-Catalyzed Diastereoselective [4+1] Annulations of <i>ortho</i> -Quinone Methides and Bromides. Journal of Organic Chemistry, 2018, 83, 12753-12762.	3.2	22
18	Lead Optimization and Antiproliferative Activity Using a New Dithiocarbamates Substructure. Chinese Journal of Organic Chemistry, 2018, 38, 2067.	1.3	0

Wei Huang

#	Article	IF	CITATIONS
19	Identification of 4-(2-furanyl)pyrimidin-2-amines as Janus kinase 2 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 75-83.	3.0	11
20	Synthesis and pharmacological evaluation of trifluoromethyl containing 4-(2-pyrimidinylamino)benzamides as Hedgehog signaling pathway inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1079-1088.	3.0	8
21	Rational Design of Highly Potent and Slow-Binding Cytochrome bc1 Inhibitor as Fungicide by Computational Substitution Optimization. Scientific Reports, 2015, 5, .	3.3	16
22	Discovery of thieno[3,2- c]pyridin-4-amines as novel Bruton's tyrosine kinase (BTK) inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 6059-6068.	3.0	18
23	Succinate Dehydrogenase: An Ideal Target for Fungicide Discovery. ACS Symposium Series, 2015, , 175-194.	0.5	62
24	Pyrrolo[2,3-b]pyridine derivatives as potent Bruton's tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 4344-4353.	3.0	17
25	An efficient one-pot access to N-(pyridin-2-ylmethyl) substituent biphenyl-4-sulfonamides through water-promoted, palladium-catalyzed, microwave-assisted reactions. RSC Advances, 2015, 5, 75182-75186.	3.6	14
26	Synthesis and biological evaluation of novel 7-substituted 3-(4-phenoxyphenyl)thieno[3,2-c]pyridin-4-amines as potent Bruton's tyrosine kinase (BTK) inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 6250-6257.	3.0	12
27	Design, synthesis and evaluation of novel 5-phenylpyridin-2(1H)-one derivatives as potent reversible Bruton's tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 348-364.	3.0	21
28	Discovery of novel Bruton's tyrosine kinase (BTK) inhibitors bearing a pyrrolo[2,3-d]pyrimidine scaffold. Bioorganic and Medicinal Chemistry, 2015, 23, 891-901.	3.0	26
29	Synthesis and evaluation of 4-(2-pyrimidinylamino) benzamides inhibitors of hedgehog signaling pathway. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 983-988.	2.2	18
30	Design, synthesis and evaluation of highly selective pyridone-based class II MET inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3351-3355.	2.2	18
31	Design, synthesis, and biological evaluation of novel 3-pyrrolo[b]cyclohexylene-2-dihydroindolinone derivatives as potent receptor tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5630-5633.	2.2	16
32	Efficient synthesis and antiproliferative activity of novel thioether-substituted flavonoids. European Journal of Medicinal Chemistry, 2013, 66, 161-170.	5.5	31
33	Synthesis and antitumor activity of novel dithiocarbamate substituted chromones. European Journal of Medicinal Chemistry, 2009, 44, 3687-3696.	5.5	154
34	Synthesis, Fungicidal, and Insecticidal Activities of β-Methoxyacrylate-Containing N-Acetyl Pyrazoline Derivatives. Journal of Agricultural and Food Chemistry, 2008, 56, 10767-10773.	5.2	101
35	Synthesis and Fungicidal Evaluation of Novel Chalcone-Based Strobilurin Analogues. Journal of Agricultural and Food Chemistry, 2007, 55, 5697-5700.	5.2	77
36	Improved Synthesis of 2â€(3H)Benzothiazolethiones under Microwave Irradiation. Synthetic Communications, 2007, 37, 369-376.	2.1	21

Wei Huang

#	Article	IF	CITATIONS
37	Design, Synthesis, and Fungicidal Activities of New Strobilurin Derivatives. Journal of Agricultural and Food Chemistry, 2007, 55, 3004-3010.	5.2	68
38	Construction of a combinatorial library of 2-(4-oxo-4H-1-benzopyran-3-yl)-4-thiazolidinones by microwave-assisted one-pot parallel syntheses. Heteroatom Chemistry, 2007, 18, 381-389.	0.7	22
39	Design, syntheses, and antitumor activity of novel chromone and aurone derivatives. Bioorganic and Medicinal Chemistry, 2007, 15, 5191-5197.	3.0	93
40	Microwave-assisted, one-pot syntheses and fungicidal activity of polyfluorinated 2-benzylthiobenzothiazoles. Bioorganic and Medicinal Chemistry, 2006, 14, 8280-8285.	3.0	134
41	A Selective Transformation of Flavanones to 3-Bromoflavones and Flavones Under Microwave Irradiation. Advanced Synthesis and Catalysis, 2006, 348, 63-67.	4.3	37