Xiaoniu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5936543/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The comprehensive effect of tensile strength and modulus on abrasive wear performance for polyurethanes. Tribology International, 2022, 169, 107459.	3.0	7
2	Bioâ€based epoxyâ€anhydride thermosets from multiâ€armed cardanolâ€derived epoxy oligomers. Polymers for Advanced Technologies, 2022, 33, 2571-2580.	1.6	3
3	Regulating the Crystallinity and Selfâ€Aggregation of Fused Ring Electron Acceptors via Branched Sideâ€Chain Engineering for Efficient Organic Solar Cells. Small, 2022, 18, 2201769.	5.2	5
4	The synthesis of polyurethane with mechanical properties that are responsive to water retention states. Polymer Chemistry, 2021, 12, 1014-1022.	1.9	7
5	Phase structure and transition behavior of zwitterionic polyurethane containing sulfobetaine. Polymer, 2021, 237, 124303.	1.8	6
6	A Novel Carbazoleâ€Based Nonfullerene Acceptor for Highâ€Efficiency Polymer Solar Cells. Solar Rrl, 2020, 4, 1900417.	3.1	17
7	High sensitivity, broad linearity range and low detection limit flexible pressure sensors based on irregular surface microstructure. Organic Electronics, 2020, 87, 105920.	1.4	8
8	Improving Efficiency of Organic Solar Cells by Restricting the Rotation of Side Chain on Small Molecule Acceptor. Solar Rrl, 2020, 4, 2000359.	3.1	9
9	Significantly Increasing the Power Conversion Efficiency by Controlling the Orientation of Nonfullerene Small Molecular Acceptors via Side Chain Engineering. Solar Rrl, 2020, 4, 2000234.	3.1	7
10	Preparation of Polyurethaneâ€Urea Elastomers Using Low Molecular Weight Aliphatic Diamines Enabled by Reversible CO 2 Chemistry. Macromolecular Chemistry and Physics, 2020, 221, 2000145.	1.1	3
11	Small diameter blood vessels with controllable micropore structure induced by centrifugal force for improved endothelialization. Engineering in Life Sciences, 2020, 20, 181-185.	2.0	3
12	A wide linearity range and high sensitivity flexible pressure sensor with hierarchical microstructures <i>via</i> laser marking. Journal of Materials Chemistry C, 2020, 8, 3088-3096.	2.7	54
13	Injectable and Cytocompatible Dual Cross-Linking Hydrogels with Enhanced Mechanical Strength and Stability. ACS Biomaterials Science and Engineering, 2020, 6, 3529-3538.	2.6	19
14	Wet Mixing with Organic Solvent for Synthesized -1,4-Polyisoprene-Based Rubber Composites. ACS Omega, 2020, 5, 30444-30453.	1.6	2
15	Wet Mixing with Organic Solvent for Synthesized <i>cis</i> -1,4-Polyisoprene-Based Rubber Composites. ACS Omega, 2020, 5, 30444-30453.	1.6	6
16	On-demand removable hydrogels based on photolabile cross-linkings as wound dressing materials. Journal of Materials Chemistry B, 2019, 7, 5669-5676.	2.9	29
17	Engineering modifiers bearing benzophenone with enhanced reactivity to construct surface microstructures. Polymer Chemistry, 2019, 10, 4859-4865.	1.9	2
18	Nonswellable and Tough Supramolecular Hydrogel Based on Strong Micelle Cross-Linkings. Biomacromolecules, 2019, 20, 3399-3407.	2.6	48

#	Article	IF	CITATIONS
19	Enhancing thermal stability of nonfullerene organic solar cells <i>via</i> fluoro-side-chain engineering. Journal of Materials Chemistry C, 2019, 7, 9513-9522.	2.7	31
20	Polyurethane End apped by Tetramethylpyrazineâ€Nitrone for Promoting Endothelialization Under Oxidative Stress. Advanced Healthcare Materials, 2019, 8, 1900582.	3.9	9
21	Flexible Pressure Sensors with Wide Linearity Range and High Sensitivity Based on Selective Laser Sintering 3D Printing. Advanced Materials Technologies, 2019, 4, 1900679.	3.0	38
22	Selenium-containing polyurethane with elevated catalytic stability for sustained nitric oxide release. Journal of Materials Chemistry B, 2019, 7, 150-156.	2.9	21
23	Tuning Hydrogel Mechanics by Kinetically Dependent Cross-Linking. Macromolecules, 2019, 52, 1249-1256.	2.2	23
24	State of the Art of Smallâ€Ðiameter Vesselâ€Polyurethane Substitutes. Macromolecular Bioscience, 2019, 19, e1800482.	2.1	15
25	Influence of hydrolysis of polyvinyl alcohol on its lubrication for styrene-ethylene-butylene-styrene block copolymer. Tribology International, 2019, 134, 408-416.	3.0	9
26	pH-driven preparation of small, non-aggregated micelles for ultra-stretchable and tough hydrogels. Chemical Engineering Journal, 2018, 342, 357-363.	6.6	11
27	Hierarchical Morphology of Polymer Blend Films Induced by Convection-Driven Solvent Evaporation. Langmuir, 2018, 34, 5551-5557.	1.6	9
28	A new copolymer based on a D–π–A or D–A–π repeat unit for polymer solar cells employing non-halogenated solvents. Journal of Materials Chemistry A, 2018, 6, 9561-9568.	5.2	10
29	Highâ€Performance Additiveâ€∤Postâ€Treatmentâ€Free Nonfullerene Polymer Solar Cells via Tuning Molecular Weight of Conjugated Polymers. Small, 2018, 14, e1704491.	5.2	17
30	Ternary Organic Solar Cells with >11% Efficiency Incorporating Thick Photoactive Layer and Nonfullerene Small Molecule Acceptor. Advanced Energy Materials, 2018, 8, 1701691.	10.2	78
31	Achieving an Efficiency Exceeding 10% for Fullereneâ€based Polymer Solar Cells Employing a Thick Active Layer via Tuning Molecular Weight. Advanced Functional Materials, 2018, 28, 1705257.	7.8	39
32	A small-molecule acceptor incorporating a silicon bridging atom for efficient nonfullerene polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 13211-13217.	2.7	10
33	Efficient Nonâ€Fullerene Organic Photovoltaic Modules Incorporating Asâ€Cast and Thicknessâ€Insensitive Photoactive Layers. Advanced Energy Materials, 2018, 8, 1801387.	10.2	44
34	Dopant/Semiconductor/Electret Trilayer Architecture for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1800339.	2.6	17
35	Efficient Polymer Solar Cells Spray oated from Nonâ€Halogenated Solvents towards Practical Fabrication. Energy Technology, 2018, 6, 171-177.	1.8	6
36	Injectable shear-thinning hydrogels with enhanced strength and temperature stability based on polyhedral oligomeric silsesquioxane end-group aggregation. Polymer Chemistry, 2017, 8, 1607-1610.	1.9	22

#	Article	IF	CITATIONS
37	Physical properties and morphology of crosslinked polyurethane synthesized from <i>para</i> â€phenylene diisocyanate and polyether polyol. Journal of Applied Polymer Science, 2017, 134, 45241.	1.3	4
38	Novel wide band gap copolymers featuring excellent comprehensive performance towards the practical application for organic solar cells. Polymer Chemistry, 2017, 8, 4332-4338.	1.9	11
39	A novel crystallizable low band gap polymer for highâ€efficiency polymer photovoltaic cells. Journal of Polymer Science Part A, 2016, 54, 44-48.	2.5	2
40	Simultaneous enhancement of performance and insensitivity to active layer thickness for OPVs by functionalizing π-spacer's side chain. Polymer Chemistry, 2016, 7, 5366-5374.	1.9	13
41	Synergistic effect of fluorination and regio-regularity on the long-term thermal stability of polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 18598-18606.	5.2	12
42	New PDI-based small-molecule cathode interlayer material with strong electron extracting ability for polymer solar cells. RSC Advances, 2016, 6, 101645-101651.	1.7	16
43	Aligned silver nanowires as transparent conductive electrodes for flexible optoelectronic devices. Journal of Materials Chemistry C, 2016, 4, 11074-11080.	2.7	26
44	Interface modification strategy based on a hybrid cathode buffer layer for promoting the performance of polymer solar cells. RSC Advances, 2016, 6, 692-700.	1.7	3
45	"Layerâ€Filter Threshold―Technique for Nearâ€Infrared Laser Ablation in Organic Semiconductor Device Processing. Advanced Functional Materials, 2015, 25, 4453-4461.	7.8	7
46	Sideâ€Chain Engineering for Enhancing the Thermal Stability of Polymer Solar Cells. Advanced Materials, 2015, 27, 6999-7003.	11.1	54
47	Improved Electrical Performance of Poly(3â€hexylthiophene) Induced by Stable Doping with Polymer Dopants. Macromolecular Chemistry and Physics, 2015, 216, 1008-1013.	1.1	4
48	Large interfacial area enhances electrical conductivity of poly(3-hexylthiophene)/insulating polymer blends. RSC Advances, 2015, 5, 1777-1784.	1.7	10
49	Selection strategy of porphyrins for achieving thermally stable polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 21051-21059.	5.2	5
50	Improved Thermal Stability of Polymer Solar Cells by Incorporating Porphyrins. Advanced Functional Materials, 2015, 25, 748-757.	7.8	41
51	Organic Electronics: Bulk Interpenetration Network of Thermoelectric Polymer in Insulating Supporting Matrix (Adv. Mater. 15/2014). Advanced Materials, 2014, 26, 2447-2447.	11.1	0
52	Aligned Polythiophene and its Blend Film by Directâ€Writing for Anisotropic Charge Transport. Advanced Functional Materials, 2014, 24, 4959-4968.	7.8	26
53	Fluorinated low band gap copolymer based on dithienosilole–benzothiadiazole for high-performance photovoltaic device. Polymer Chemistry, 2014, 5, 6279-6286	1.9	16
54	Fabricating graphene oxide/poly(3-butylthiophene) hybrid materials with different morphologies and crystal structures. RSC Advances, 2013, 3, 4254.	1.7	13

#	Article	IF	CITATIONS
55	New benzotrithiophene derivative with a broad band gap for high performance polymer solar cells. Polymer Chemistry, 2013, 4, 57-60.	1.9	50
56	Morphology and Performance of Poly(2â€methoxyâ€5â€(20â€ethylâ€hexyloxy)â€ <i>p</i> â€phenylenevinylene) (MEHâ€PPV):(6,6)â€phenylâ€C ₆₁ â€butyric Acid Methyl Ester (PCBM) Based Polymer Solar Cells. Chinese Journal of Chemistry, 2013, 31, 731-736.	2.6	8
57	Miscibility, Crystallization, and Morphology of the Double-Crystalline Blends of Insulating Polyethylene and Semiconducting Poly(3-Butylthiophene). Journal of Macromolecular Science - Physics, 2013, 52, 1388-1404.	0.4	5
58	Sol–gel transition of poly(3-hexylthiophene) revealed by capillary measurements: phase behaviors, gelation kinetics and the formation mechanism. Soft Matter, 2012, 8, 726-733.	1.2	31
59	An aqueous soaking treatment for efficient polymer solar cells. RSC Advances, 2012, 2, 10231.	1.7	7
60	Effect of Molecular Weight and Processing Additive on the Performance of Low Bandgap Polymer Solar Cells. Chinese Journal of Chemistry, 2012, 30, 2052-2058.	2.6	15
61	A novel melting behavior of poly(3-alkylthiophene) cocrystals: premelting and recrystallization of component polymers. Polymer Chemistry, 2012, 3, 3301.	1.9	32
62	The functions of crystallizable ethyleneâ€propylene copolymers in the formation of multiple phase morphology of high impact polypropylene. Journal of Applied Polymer Science, 2012, 123, 1302-1309.	1.3	30
63	Solvent-soaking treatment induced morphology evolution in P3HT/PCBM composite films. Journal of Materials Chemistry, 2011, 21, 6563.	6.7	82
64	Synthesis of aluminium-doped ZnO nanocrystals with controllable morphology and enhanced electrical conductivity. Journal of Materials Chemistry, 2011, 21, 4161.	6.7	61
65	Chain orientation and distribution in ringâ€banded spherulites formed in poly(ester urethane) multiblock copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 541-547.	2.4	12
66	Precise construction of PCBM aggregates for polymer solar cellsvia multi-step controlled solvent vapor annealing. Journal of Materials Chemistry, 2010, 20, 683-688.	6.7	130
67	Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. Journal of Materials Chemistry, 2008, 18, 1984.	6.7	235
68	Nanoscale Phase-Aggregation-Induced Performance Improvement of Polymer Solar Cells. Small, 2007, 3, 611-615.	5.2	38
69	Progress in polymer solar cell. Science Bulletin, 2007, 52, 145-158.	1.7	18
70	Efficient polymer:polymer bulk heterojunction solar cells. Applied Physics Letters, 2006, 88, 083504.	1.5	129
71	Morphology determination of functional poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]/poly[0xa-1,4-phenylene-1,2-(1-cyanovinylene)-2-blends as used for all-polymer solar cells. Journal of Applied Polymer Science, 2005, 97, 1001-1007.	methoxy,	5-தூ-dimet

Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Letters, 2005, 5, 579-583.

4.5 1,499

#	Article	IF	CITATIONS
73	Relating the molecular structure and crystallization behavior of polypropylene. Polymer Engineering and Science, 2004, 44, 1749-1754.	1.5	6
74	Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices. Macromolecules, 2004, 37, 2151-2158.	2.2	339
75	Crystal Structure of 11-{[(4′-Heptoxy-4-Biphenylyl) Carbonyl] Oxy}-1-Undecyne. Molecular Crystals and Liquid Crystals, 2002, 383, 115-130.	0.4	5
76	Dependence of the Brill Transition on the Crystal Size of Nylon 10 10. Macromolecules, 2001, 34, 5936-5942.	2.2	45
77	Influence of temperature on lattice spacings of melt-crystallized poly(iminosebacoyl) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	10 ₀ Tf 50 58
78	Isothermal and nonisothermal crystallization of poly(aryl ether ketone ketone) with all-para phenylene linkage. Journal of Applied Polymer Science, 2001, 82, 3431-3438.	1.3	5
79	Lamellar single crystals of nylon-10,10 grown from a dimethylformamide solution. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 729-735.	2.4	3
80	Self-Organization of Interlaced Network Lamellar Crystals oftrans-1,4-Polybutadiene (TPBD) on an Amorphous Surface. Macromolecular Rapid Communications, 2001, 22, 345-348.	2.0	2
81	Crystal-To-Crystal Transition oftrans-1,4-Polybutadiene (TPBD). Macromolecular Chemistry and Physics, 2001, 202, 1166-1172.	1.1	13
82	Influence of Crystallization Conditions on the Crystal Order and Dynamic Thermal Behavior of Nylon 1010. Macromolecular Chemistry and Physics, 2001, 202, 1631-1637.	1.1	8
83	Spatially-confined crystallization of poly(vinylidene fluoride). Polymer International, 2000, 49, 1525-1528.	1.6	23
84	Crystallization and melting behavior of amorphous poly(iminosebacoyl iminodecamethylene). Journal of Applied Polymer Science, 2000, 77, 993-1002.	1.3	2
85	Isothermal crystallization kinetics of PEO in poly(ethylene terephthalate)-poly(ethylene oxide) segmented copolymers. I. Effect of the soft-block length. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 3230-3238.	2.4	12