List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5936537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polydopamine and gelatin coating for rapid endothelialization of vascular scaffolds. Materials Science and Engineering C, 2022, 134, 112544.	3.8	20
2	Intranasal delivery of nanoparticles. Nanomedicine, 2022, , .	1.7	0
3	Extramedullary plasmacytoma: Tumor occurrence and therapeutic concepts—A followâ€up. Cancer Medicine, 2022, 11, 4743-4755.	1.3	16
4	A Printâ€andâ€Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels. Advanced Materials, 2022, 34, .	11.1	24
5	Cardiovascular applications of magnetic particles. Journal of Magnetism and Magnetic Materials, 2021, 518, 167428.	1.0	14
6	Nanomedicine for vaccination and diagnosis of diseases. Nanomedicine, 2021, 16, 165-169.	1.7	0
7	Differential Responses to Bioink-Induced Oxidative Stress in Endothelial Cells and Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 2358.	1.8	12
8	Hydroxyapatite-Coated SPIONs and Their Influence on Cytokine Release. International Journal of Molecular Sciences, 2021, 22, 4143.	1.8	7
9	Melt Electrowriting of Isomalt for Highâ€Resolution Templating of Embedded Microchannels. Advanced Materials Technologies, 2021, 6, 2100221.	3.0	9
10	Modulation of immune responses by nanoparticles. Nanomedicine, 2021, 16, 1925-1929.	1.7	1
11	Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. Nanomaterials, 2021, 11, 2337.	1.9	48
12	The Grand Challenges in Cardiovascular Drug Delivery. Frontiers in Drug Delivery, 2021, 1, .	0.4	6
13	Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications. Molecules, 2020, 25, 4425.	1.7	17
14	Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool. Nanomaterials, 2020, 10, 2014.	1.9	8
15	The Effect of Antibacterial Particle Incorporation on the Mechanical Properties, Biodegradability, and Biocompatibility of PLA and PHBV Composites. Macromolecular Materials and Engineering, 2020, 305, 2000244.	1.7	23
16	Nanomedicine for infectious diseases. Nanomedicine, 2020, 15, 1263-1267.	1.7	2
17	Optimization of cell seeding on electrospun PCL-silk fibroin scaffolds. European Polymer Journal, 2020, 134, 109838.	2.6	21
18	Nanoparticles for regenerative medicine. Nanomedicine, 2019, 14, 1929-1933.	1.7	12

#	Article	IF	CITATIONS
19	Magnetic Accumulation of SPIONs under Arterial Flow Conditions: Effect of Serum and Red Blood Cells. Molecules, 2019, 24, 2588.	1.7	12
20	Plaque Permeability Assessed With DCE-MRI Associates With USPIO Uptake inÂPatients With Peripheral Artery Disease. JACC: Cardiovascular Imaging, 2019, 12, 2081-2083.	2.3	24
21	Nanomedicine for neuroprotection. Nanomedicine, 2019, 14, 127-130.	1.7	3
22	Easy-to-Prepare Coating of Standard Cell Culture Dishes for Cell-Sheet Engineering Using Aqueous Solutions of Poly(2-n-propyl-oxazoline). ACS Biomaterials Science and Engineering, 2019, 5, 1509-1517.	2.6	10
23	Nanomedicine for cardiovascular disorders. Nanomedicine, 2019, 14, 3007-3012.	1.7	8
24	Hydrogel matrices based on elastin and alginate for tissue engineering applications. International Journal of Biological Macromolecules, 2018, 114, 614-625.	3.6	45
25	Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 8443-8460.	3.3	32
26	Comparative analysis of nanosystems' effects on human endothelial and monocytic cell functions. Nanotoxicology, 2018, 12, 957-974.	1.6	6
27	Soy Protein-Based Composite Hydrogels: Physico-Chemical Characterization and In Vitro Cytocompatibility. Polymers, 2018, 10, 1159.	2.0	14
28	From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovascular Research, 2018, 114, 1714-1727.	1.8	63
29	Soy protein isolate/bioactive glass composite membranes: Processing and properties. European Polymer Journal, 2018, 106, 232-241.	2.6	17
30	Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. International Journal of Nanomedicine, 2018, Volume 13, 1899-1915.	3.3	105
31	â€~Nano-lysing' the disease process:Ânovel diagnostic and therapeutic nanoparticles. Nanomedicine, 2018, 13, 1087-1091.	1.7	0
32	Journal watch: diagnostic nanoparticles. Nanomedicine, 2017, 12, 181-184.	1.7	2
33	A novel human artery model to assess the magnetic accumulation of SPIONs under flow conditions. Scientific Reports, 2017, 7, 42314.	1.6	16
34	Biofabrication of vessel grafts based on natural hydrogels. Current Opinion in Biomedical Engineering, 2017, 2, 83-89.	1.8	16
35	Cell specificity of magnetic cell seeding approach to hydrogel colonization. Journal of Biomedical Materials Research - Part A, 2017, 105, 2948-2957.	2.1	10
36	Magnetic nanoparticles for medical applications. Nanomedicine, 2017, 12, 825-829.	1.7	2

#	Article	IF	CITATIONS
37	Treat or track: nanoagents in the service of health. Nanomedicine, 2017, 12, 2715-2719.	1.7	Ο
38	Macromolecular interactions in alginate–gelatin hydrogels regulate the behavior of human fibroblasts. Journal of Bioactive and Compatible Polymers, 2017, 32, 309-324.	0.8	34
39	Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. International Journal of Nanomedicine, 2017, Volume 12, 5223-5238.	3.3	82
40	Synthesis and Characterization of Tissue Plasminogen Activator—Functionalized Superparamagnetic Iron Oxide Nanoparticles for Targeted Fibrin Clot Dissolution. International Journal of Molecular Sciences, 2017, 18, 1837.	1.8	29
41	Structural reorganization of the cytoskeleton contributes to the induction of pro-fibrotic connective tissue growth factor in tubular epithelial cells. Journal of Cellular Biotechnology, 2016, 2, 23-33.	0.1	ο
42	Evaluation of hydrogel matrices for vessel bioplotting: Vascular cell growth and viability. Journal of Biomedical Materials Research - Part A, 2016, 104, 577-585.	2.1	25
43	Soft-matrices based on silk fibroin and alginate for tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1420-1431.	3.6	35
44	Strategies to enhance nanoparticle-endothelial interactions under flow. Journal of Cellular Biotechnology, 2016, 1, 191-208.	0.1	19
45	Nano-biomaterials for cardiovascular applications: Clinical perspective. Journal of Controlled Release, 2016, 229, 23-36.	4.8	34
46	Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing. Nanomedicine, 2016, 11, 597-616.	1.7	57
47	Novel nanoparticulate drug delivery systems. Nanomedicine, 2016, 11, 573-576.	1.7	2
48	Mitoxantrone-loaded superparamagnetic iron oxide nanoparticles as drug carriers for cancer therapy: Uptake and toxicity in primary human tubular epithelial cells. Nanotoxicology, 2016, 10, 557-566.	1.6	20
49	Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function. Clinical Hemorheology and Microcirculation, 2015, 61, 259-277.	0.9	24
50	Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods. International Journal of Nanomedicine, 2015, 10, 4185.	3.3	65
51	Thrombosis: Novel nanomedical concepts of diagnosis and treatment. World Journal of Cardiology, 2015, 7, 434.	0.5	27
52	Endothelial biocompatibility and accumulation of SPION under flow conditions. Journal of Magnetism and Magnetic Materials, 2015, 380, 20-26.	1.0	22
53	Highlights from the latest articles in nanoparticles, nanomaterials and nanotoxicity testing. Nanomedicine, 2015, 10, 181-184.	1.7	0
54	Effect of specific surface microstructures on substrate endothelialisation and thrombogenicity: Importance for stent design. Clinical Hemorheology and Microcirculation, 2015, 59, 219-233.	0.9	28

#	Article	IF	CITATIONS
55	Imaging and quantification of SPIONs for cancer therapy with magnetic drug targeting. , 2015, , .		1
56	Nanomedical innovation: the SEON-concept for an improved cancer therapy with magnetic nanoparticles. Nanomedicine, 2015, 10, 3287-3304.	1.7	25
57	Recent nanomedicine articles of outstanding interest: nanoparticle functionalization for disease diagnostics and therapy. Nanomedicine, 2015, 10, 2133-2137.	1.7	0
58	Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel. PLoS ONE, 2014, 9, e107952.	1.1	201
59	Rubbing salt into wounded endothelium: Sodium potentiates proatherogenic effects of TNF-α under non-uniform shear stress. Thrombosis and Haemostasis, 2014, 112, 183-195.	1.8	21
60	Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility. International Journal of Nanomedicine, 2014, 9, 4847.	3.3	105
61	Cardiovascular therapy through nanotechnology – how far are we still from bedside?. European Journal of Nanomedicine, 2014, 6, .	0.6	15
62	Research Highlights. Nanomedicine, 2014, 9, 189-192.	1.7	0
63	Hybrid hydrogels based on keratin and alginate for tissue engineering. Journal of Materials Chemistry B, 2014, 2, 5441-5451.	2.9	60
64	Dual inhibition of Src family kinases and Aurora kinases by SU6656 modulates CTGF (connective tissue) Tj ETQq(Cell Biology, 2014, 46, 39-48.	0 0 0 rgBT 1.2	/Overlock 10 5
65	Different treatment settings of Granulocyte-Colony Stimulating Factor and their impact on T cell-specific immune response in experimental stroke. Immunology Letters, 2014, 158, 95-100.	1.1	3
66	TCT-800 Endothelialisation of microstructure-modified surfaces: Importance for stent design. Journal of the American College of Cardiology, 2013, 62, B243.	1.2	0
67	Decreased numbers of regulatory T cells are associated with human atherosclerotic lesion vulnerability and inversely correlate with infiltrated mature dendritic cells. Atherosclerosis, 2013, 230, 92-99.	0.4	90
68	Impact of telmisartan on the inflammatory state in patients with coronary atherosclerosis $\hat{a} \in \hat{a}$ Influence on IP-10, TNF- $\hat{1}$ ± and MCP-1. Cytokine, 2013, 62, 290-296.	1.4	24
69	HIF-1α activation results in actin cytoskeleton reorganization and modulation of Rac-1 signaling in endothelial cells. Cell Communication and Signaling, 2013, 11, 80.	2.7	33
70	Nanomedicine in diagnostics and therapy of cardiovascular diseases: beyond atherosclerotic plaque imaging. Nanotechnology Reviews, 2013, 2, 449-472.	2.6	19
71	Imaging modalities using magnetic nanoparticles – overview of the developments in recent years. Nanotechnology Reviews, 2013, 2, 381-394.	2.6	6
72	Shear stress patterns affect the secreted chemokine profile in endothelial cells. Clinical Hemorheology and Microcirculation, 2012, 50, 143-152.	0.9	31

#	Article	IF	CITATIONS
73	Suppression of dendritic cell functions contributes to the anti-inflammatory action of granulocyte-colony stimulating factor in experimental stroke. Experimental Neurology, 2012, 237, 379-387.	2.0	18
74	Association of systemic inflammation markers with the presence and extent of coronary artery calcification. Cytokine, 2012, 57, 251-257.	1.4	29
75	Early obstruction of decellularized xenogenic valves in pediatric patients: involvement of inflammatory and fibroproliferative processes. Cardiovascular Pathology, 2011, 20, 222-231.	0.7	64
76	VEGFR2 signalling contributes to increased endothelial susceptibility to TNF- $\hat{l}\pm$ under chronic non-uniform shear stress. Atherosclerosis, 2011, 219, 499-509.	0.4	16
77	Resveratrol Inhibits Monocytic Cell Chemotaxis to MCP-1 and Prevents Spontaneous Endothelial Cell Migration Through Rho Kinase-Dependent Mechanism. Journal of Atherosclerosis and Thrombosis, 2011, 18, 1031-1042.	0.9	22
78	Carotid Plaque Vulnerability. Stroke, 2011, 42, 3502-3510.	1.0	81
79	Reply to Erdbrügger and Stein-Konertz. European Journal of Cardio-thoracic Surgery, 2011, 39, 284.	0.6	0
80	Telmisartan prevents VCAM-1 induction and monocytic cell adhesion to endothelium exposed to non-uniform shear stress and TNF- $\hat{l}\pm$. Clinical Hemorheology and Microcirculation, 2011, 48, 65-73.	0.9	17
81	Transient decrease in circulating dendritic cell precursors after acute stroke: potential recruitment into the brain. Clinical Science, 2010, 118, 147-157.	1.8	60
82	Role of shear stress patterns in the TNF-α-induced atherogenic protein expression and monocytic cell adhesion to endothelium. Clinical Hemorheology and Microcirculation, 2010, 46, 203-210.	0.9	12
83	FoxO Proteins Mediate Hypoxic Induction of Connective Tissue Growth Factor in Endothelial Cells. Journal of Biological Chemistry, 2010, 285, 4328-4336.	1.6	34
84	Early failure of xenogenous de-cellularised pulmonary valve conduits — a word of caution!â~†. European Journal of Cardio-thoracic Surgery, 2010, 38, 78-85.	0.6	96
85	Emergence of dendritic cells in the myocardium after acute myocardial infarction - implications for inflammatory myocardial damage. International Journal of Biomedical Science, 2010, 6, 27-36.	0.5	8
86	Cell type-specific regulation of CCN2 protein expression by PI3K–AKT–FoxO signaling. Journal of Cell Communication and Signaling, 2009, 3, 79-84.	1.8	13
87	Connective tissue growth factor: Contextâ€dependent functions and mechanisms of regulation. BioFactors, 2009, 35, 200-208.	2.6	125
88	Shear stress preconditioning modulates endothelial susceptibility to circulating TNF-α and monocytic cell recruitment in a simplified model of arterial bifurcations. Atherosclerosis, 2009, 207, 93-102.	0.4	54
89	Predictive value of the decrease in circulating dendritic cell precursors in stable coronary artery disease. Clinical Science, 2009, 116, 353-363.	1.8	44
90	Pharmacological inhibition of RhoA signaling prevents connective tissue growth factor induction in endothelial cells exposed to non-uniform shear stress. Atherosclerosis, 2008, 196, 136-145.	0.4	43

#	Article	IF	CITATIONS
91	Endothelial dysfunction and monocyte recruitment in cells exposed to non-uniform shear stress. Clinical Hemorheology and Microcirculation, 2008, 39, 113-119.	0.9	32
92	Endothelial dysfunction and monocyte recruitment in cells exposed to non-uniform shear stress. Clinical Hemorheology and Microcirculation, 2008, 39, 113-9.	0.9	15
93	Actin-dependent regulation of connective tissue growth factor. American Journal of Physiology - Cell Physiology, 2007, 292, C1732-C1738.	2.1	57
94	Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques. Experimental and Molecular Pathology, 2007, 82, 245-255.	0.9	51
95	Activated myeloid dendritic cells accumulate and co-localize with CD3+ T cells in coronary artery lesions in patients with Kawasaki disease. Experimental and Molecular Pathology, 2007, 83, 93-103.	0.9	43
96	Decrease in Circulating Myeloid Dendritic Cell Precursors in Coronary Artery Disease. Journal of the American College of Cardiology, 2006, 48, 70-80.	1.2	108
97	Differential effects of statins on relevant functions of human monocyte-derived dendritic cells. Journal of Leukocyte Biology, 2006, 79, 529-538.	1.5	107
98	Connective tissue growth factor is released from platelets under high shear stress and is differentially expressed in endothelium along atherosclerotic plaques. Clinical Hemorheology and Microcirculation, 2006, 35, 203-6.	0.9	23
99	Connective Tissue Growth Factor Is Overexpressed in Complicated Atherosclerotic Plaques and Induces Mononuclear Cell Chemotaxis In Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1008-1013.	1.1	120
100	ACE Inhibition Lowers Angiotensin-II-Induced Monocyte Adhesion to HUVEC by Reduction of p65 Translocation and AT1 Expression. Journal of Vascular Research, 2005, 42, 399-407.	0.6	41
101	Activated human platelets release connective tissue growth factor. Thrombosis and Haemostasis, 2004, 91, 755-760.	1.8	71
102	Monitoring the Cellular Effects of HMG-CoA Reductase Inhibitors In Vitro and Ex Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2046-2050.	1.1	38
103	Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis, 2004, 176, 101-110.	0.4	244
104	Changes of RBC aggregation in oxygenation-deoxygenation: pH dependency and cell morphology. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H2335-H2342.	1.5	42
105	Reduced oxygen release from erythrocytes by the acceleration-induced flow shift, observed in an oxygen-permeable narrow tube. Journal of Biomechanics, 2002, 35, 1241-1251.	0.9	27
106	O2 release from erythrocytes flowing in a narrow O2-permeable tube: effects of erythrocyte aggregation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H448-H456.	1.5	72
107	Gamma-Ray-Irradiated Red Blood Cells Stored in Mannitol-Adenine-Phosphate Medium: Rheological Evaluation and Susceptibility to Oxidative Stress. Vox Sanguinis, 2000, 79, 75-82.	0.7	39
108	Rheological changes in human red blood cells under oxidative stress: effects of thiol-containing antioxidants. Pathophysiology, 1999, 6, 121-128.	1.0	9

IWONA CICHA

#	Article	IF	CITATIONS
109	Rheological changes in human red blood cells under oxidative stress. Pathophysiology, 1999, 6, 103-110.	1.0	19
110	TNF-α in the cardiovascular system: from physiology to therapy. International Journal of Interferon, Cytokine and Mediator Research, 0, , 9.	1.1	44
111	Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. International Journal of Nanomedicine, 0, Volume 17, 2139-2163.	3.3	3
112	On-Demand Drug Delivery: Recent Advances in Cardiovascular Applications. Frontiers in Drug Delivery, 0, 2, .	0.4	1