Chunmei Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5936450/publications.pdf Version: 2024-02-01

CHUNMEL DINC

#	Article	IF	CITATIONS
1	A removable photothermal antibacterial "warm paste―target for cariogenic bacteria. Chemical Engineering Journal, 2022, 429, 132491.	12.7	37
2	Polypeptide coatings on biominerals with superior antimicrobial and antifouling properties inspired by human salivary proteins. Applied Materials Today, 2022, 27, 101446.	4.3	1
3	Selfâ€Organized Spatiotemporal Mineralization of Hydrogel: A Simulant of Osteon. Small, 2022, 18, e2106649.	10.0	8
4	Virusâ€Like Iron Oxide Minerals Inspired by Magnetotactic Bacteria: Towards an Outstanding Photothermal Superhydrophobic Platform on Universal Substrates. Advanced Functional Materials, 2022, 32, .	14.9	14
5	Invisible assassin coated on dental appliances for on-demand capturing and killing of cariogenic bacteria. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112696.	5.0	7
6	Direct Current Stimulation for Improved Osteogenesis of MC3T3 Cells Using Mineralized Conductive Polyaniline. ACS Biomaterials Science and Engineering, 2021, 7, 852-861.	5.2	14
7	Induction of Chirality in Supramolecular Coassemblies Built from Achiral Precursors. Journal of Physical Chemistry Letters, 2021, 12, 1155-1161.	4.6	11
8	Sulfated alginate based complex for sustained calcitonin delivery and enhanced osteogenesis. Biomedical Materials (Bristol), 2021, 16, 035022.	3.3	4
9	Biomineral interface with superior cell adhesive and antibacterial properties based on enzyme-triggered digestion of saliva acquired pellicle-inspired polypeptide coatings. Chemical Engineering Journal, 2021, 415, 128955.	12.7	12
10	Electrically facilitated mineralization of osteoblasts and polypyrrole micro-bowl coatings for promotion of the osteogenic activity. Colloids and Interface Science Communications, 2021, 43, 100450.	4.1	9
11	Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. Journal of Materials Chemistry B, 2021, 9, 8646-8658.	5.8	19
12	Functional biomedical materials derived from proteins in the acquired salivary pellicle. Journal of Materials Chemistry B, 2021, 9, 6507-6520.	5.8	5
13	Biomineralization and osteogenic differentiation modulated by substrate stiffness. European Polymer Journal, 2020, 122, 109395.	5.4	9
14	A facile strategy to construct silk fibroin based GTR membranes with appropriate mechanical performance and enhanced osteogenic capacity. Journal of Materials Chemistry B, 2020, 8, 10407-10415.	5.8	18
15	Injectable hydrogels based on gellan gum promotes in situ mineralization and potential osteogenesis. European Polymer Journal, 2020, 141, 110091.	5.4	10
16	Thermosensitive Polysaccharide Hydrogel As a Versatile Platform for Prolonged Salmon Calcitonin Release and Calcium Regulation. ACS Biomaterials Science and Engineering, 2020, 6, 4077-4086.	5.2	11
17	A natural polymer based bioadhesive with self-healing behavior and improved antibacterial properties. Biomaterials Science, 2020, 8, 4346-4357.	5.4	49
18	Programmed antibacterial and mineralization therapy for dental caries based on zinc-substituted hydroxyapatite/ alendronate-grafted polyacrylic acid hybrid material. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111206.	5.0	20

Chunmei Ding

#	Article	IF	CITATIONS
19	From kPa to MPa: An Environmentally Friendly Way to Prepare a Polysaccharide Hydrogel with Tunable Mechanical Properties. Industrial & Engineering Chemistry Research, 2020, 59, 4829-4834.	3.7	7
20	Bioinspired enamel-like oriented minerals on general surfaces: towards improved mechanical properties. Journal of Materials Chemistry B, 2019, 7, 5237-5244.	5.8	21
21	Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical stimulation. Biomaterials Science, 2019, 7, 4730-4737.	5.4	29
22	pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomaterials Science, 2019, 7, 1643-1651.	5.4	54
23	A glassy carbon electrode modified with molecularly imprinted poly(aniline boronic acid) coated onto carbon nanotubes for potentiometric sensing of sialic acid. Mikrochimica Acta, 2019, 186, 270.	5.0	16
24	Bioinspired heptapeptides as functionalized mineralization inducers with enhanced hydroxyapatite affinity. Journal of Materials Chemistry B, 2018, 6, 1984-1994.	5.8	31
25	One-step phosphorylated poly(amide-amine) dendrimer loaded with apigenin for simultaneous remineralization and antibacterial of dentine. Colloids and Surfaces B: Biointerfaces, 2018, 172, 760-768.	5.0	37
26	Universal and biocompatible hydroxyapatite coating induced by phytic acid-metal complex multilayer. Colloids and Surfaces B: Biointerfaces, 2018, 169, 478-485.	5.0	21
27	Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP. Colloids and Surfaces B: Biointerfaces, 2017, 156, 87-94.	5.0	23
28	Bioinspired from Salivary Acquired Pellicle: A Multifunctional Coating for Biominerals. Chemistry of Materials, 2017, 29, 5663-5670.	6.7	25
29	Thermoresponsive hydrogels based on a phosphorylated star-shaped copolymer: mimicking the extracellular matrix for in situ bone repair. Journal of Materials Chemistry B, 2017, 5, 428-434.	5.8	18
30	Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid. Colloids and Surfaces B: Biointerfaces, 2017, 160, 136-143.	5.0	45
31	From molecules to macrostructures: recent development of bioinspired hard tissue repair. Biomaterials Science, 2017, 5, 1435-1449.	5.4	40
32	Calcitonin-Loaded Thermosensitive Hydrogel for Long-Term Antiosteopenia Therapy. ACS Applied Materials & Interfaces, 2017, 9, 23428-23440.	8.0	63
33	Bio-inspired peptide decorated dendrimers for a robust antibacterial coating on hydroxyapatite. Polymer Chemistry, 2017, 8, 4264-4279.	3.9	31
34	Facile One-Step Strategy for Highly Boosted Microbial Extracellular Electron Transfer of the Genus <i>Shewanella</i> . ACS Nano, 2016, 10, 6331-6337.	14.6	17
35	Dual pH-responsive micelles with both charge-conversional property and hydrophobic–hydrophilic transition for effective cellular uptake and intracellular drug release. Polymer Chemistry, 2016, 7, 2202-2208.	3.9	23
36	Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4. RSC Advances, 2016, 6, 22488-22493.	3.6	13

Chunmei Ding

#	Article	IF	CITATIONS
37	Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials. Scientific Reports, 2015, 5, 11105.	3.3	27
38	Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein. Colloids and Surfaces B: Biointerfaces, 2015, 128, 304-314.	5.0	46
39	Recent developments and applications of bioinspired dendritic polymers. Polymer Chemistry, 2015, 6, 668-680.	3.9	61
40	Wettabilityâ€Regulated Extracellular Electron Transfer from the Living Organism of <i>Shewanella loihica</i> PVâ€4. Angewandte Chemie - International Edition, 2015, 54, 1446-1451.	13.8	67
41	Synthesis and Characterization of Structure-Controlled Micro-/Nanocomposite TiO ₂ Fibers with Enhanced Photocatalytic Activity. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	3
42	A multi-functional polymer coating that is heat-resistant, hydrophobic and transparent. Particuology, 2014, 17, 11-14.	3.6	4
43	Hybrid bio–organic interfaces with matchable nanoscale topography for durable high extracellular electron transfer activity. Nanoscale, 2014, 6, 7866.	5.6	30
44	A facile bacterial assisted electrochemical self-assembly of polypyrrole micro-pillars: towards underwater low adhesive superoleophobicity. Nanoscale, 2014, 6, 190-194.	5.6	13
45	PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil droplet transport. Soft Matter, 2012, 8, 9064.	2.7	94
46	Self-assembled hierarchical micro/nano-structured PEDOT as an efficient oxygen reduction catalyst over a wide pH range. Journal of Materials Chemistry, 2012, 22, 17153.	6.7	29
47	Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays. Energy and Environmental Science, 2012, 5, 8517.	30.8	65
48	Reversible underwater switching between superoleophobicity and superoleophilicity on conducting polymer nanotube arrays. Soft Matter, 2011, 7, 4163.	2.7	58
49	Multilevel and Multiscale Nanostructures of Polyaniline Doped With <scp>L</scp> ‣ysine. Macromolecular Chemistry and Physics, 2011, 212, 1410-1418.	2.2	3
50	Macromol. Rapid Commun. 6/2011. Macromolecular Rapid Communications, 2011, 32, n/a-n/a.	3.9	1
51	ELECTROSPINNING PREPARATION AND CHARACTERIZATION OF SIZE CONTROLLABLE POLYANILINE COMPOSITE MICOSPHERES. Acta Polymerica Sinica, 2011, 011, 752-757.	0.0	0