
Irma ChacÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5936428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of compensator ions in the anionic part of Na3ZrM(PO4)3 phosphate with M = Zn, Co, Cu on the acidity and catalytic activity in reactions of butanol-2. Russian Journal of Physical Chemistry A, 2013, 87, 372-375.	0.6	21
2	Activation of Cu-, Ag-, Au/ZrO2 Catalysts for Dehydrogenation of Alcohols by Low-Temperature Oxygen and Hydrogen Plasma. Theoretical and Experimental Chemistry, 2013, 49, 65-69.	0.8	21
3	Dehydrogenation of butyl alcohols on NASICON-type solid electrolytes of Na1 â^ 2x Cu x Zr2(PO4)3 composition. Russian Journal of Physical Chemistry A, 2011, 85, 2109-2114.	0.6	17
4	Catalytic dehydrogenation of propanol-2 on Na-Zr phosphates containing Cu, Co, and Ni. Russian Journal of Physical Chemistry A, 2012, 86, 935-941.	0.6	17
5	Dehydration of butanols on copper-containing zirconium orthophosphates. Russian Journal of Physical Chemistry A, 2010, 84, 400-404.	0.6	13
6	Attractive fluorine···fluorine interactions between perfluorinated alkyl chains: a case of perfluorinated Cu(II) diiminate Cu[C ₂ F ₅ –C(NH)–CF=C(NH)–CF ₃] ₂ . Zeitschrift Fur Kristallographie - Crystalline Materials, 2021, 236, 117-122.	0.8	11
7	Study of Cu modified Zr and Al mixed oxides in ethanol conversion: The structure-catalytic activity relationship. Catalysis Today, 2021, 379, 159-165.	4.4	8
8	Catalytic Activity of Thermally Treated Li3Fe2(PO4)3 in the Conversion of Butan-1-ol. Mendeleev Communications, 2012, 22, 150-151.	1.6	7
9	Ethanol dehydrogenation on copper catalysts with ytterbium stabilized tetragonal ZrO2 support. Russian Journal of Physical Chemistry A, 2016, 90, 2370-2376.	0.6	7
10	Titanosilicalites (MFI-type): Composition, statistical and local structure, catalytic properties. Microporous and Mesoporous Materials, 2021, 326, 111377.	4.4	7
11	The influence of plasma chemical treatments on the activity of the Li3Fe2(PO4)3 catalyst in butanol-2 transformations. Russian Journal of Physical Chemistry A, 2006, 80, 882-885.	0.6	5
12	Isobutanol dehydrogenation on copper-containing bismuth vanadates. Russian Journal of Physical Chemistry A, 2013, 87, 560-564.	0.6	5
13	Hydrothermal ethanol conversion on Ag, Cu, Au/TiO2. Russian Journal of Physical Chemistry A, 2014, 88, 1637-1642.	0.6	5
14	Reactions of isobutanol over a NASICON-type Ni-containing catalyst activated by plasma treatments. Kinetics and Catalysis, 2015, 56, 476-479.	1.0	5
15	Effect of mono- and bimetallic nanoparticles Fe, Ni, & Fe/Ni based on carbon nanocomposites on electrocatalytic properties of anodes. IOP Conference Series: Materials Science and Engineering, 2016, 151, 012023.	0.6	5
16	Catalytic properties of the framework-structured zirconium-containing phosphates in ethanol conversion. Research on Chemical Intermediates, 2021, 47, 3645-3659.	2.7	5
17	The Role of the Compositions of HZSM-5 Zeolites modified with Nanosized Anatase in Propane and Ethanol Conversion. Catalysis Today, 2021, , .	4.4	5
18	The desorption and reactivity of butanol adsorbed on lithium iron phosphate (LISICON) activated in a hydrogen plasma. Russian Journal of Physical Chemistry A, 2010, 84, 2172-2176.	0.6	4

Irma ChacÃ³n

#	Article	IF	CITATIONS
19	Effect of the plasma-chemical treatment of ZnO and NiO on their activity in the dehydrogenation of isopropanol. Russian Journal of Physical Chemistry A, 2015, 89, 1339-1342.	0.6	4
20	Adsorption of isopropanol and cyclohexane on zinc oxide. Russian Journal of Physical Chemistry A, 2015, 89, 108-113.	0.6	3
21	Thermal and plasmochemical activation of the zirconia-supported copper catalyst for ethanol dehydrogenation. Russian Journal of Physical Chemistry A, 2017, 91, 862-865.	0.6	3
22	Dehydration of Isobutyl Alcohol on Cesium-Cobalt-Containing NASICON Catalysts. Theoretical and Experimental Chemistry, 2017, 53, 47-52.	0.8	3
23	Effect of plasma-chemical and thermal treatment in oxygen on the activity of Na3ZrM(PO4)3 phosphates (M = Zn, Co, Cu) in the transformation of butanol-2. Russian Journal of Physical Chemistry A, 2013, 87, 929-934.	0.6	2
24	Adsorption of isopropanol on a nickel oxide. Russian Journal of Physical Chemistry A, 2014, 88, 123-126.	0.6	2
25	Desorption and reactions between alcohols adsorbed on Na-Zr-M phosphates and a compensator ion M = Cu2+, Ni2+, Co2+. Protection of Metals and Physical Chemistry of Surfaces, 2014, 50, 331-335.	1.1	2
26	The Role of Structure and Conductivity of Perovskites Bi4V2â^'2x M2x O11â^'δ (M = Cu2+, Fe3+, Zr4+) in the Catalytic Dehydrogenation of Isobutanol. Russian Journal of Physical Chemistry A, 2016, 90, 771-776.	0.6	2
27	Frame Catalysts of Al2O3–ZrO2–CeO2 System. Inorganic Materials: Applied Research, 2018, 9, 960-964.	0.5	2
28	Acid Properties of Cesium-Nickel-Zirconium Complex Phosphates: Effect on Isobutanol Dehydration. Petroleum Chemistry, 2020, 60, 592-596.	1.4	2
29	Properties of copper-containing catalysts on a NASICON support in transformations of butanol. Russian Journal of Physical Chemistry A, 2006, 80, S111-S115.	0.6	1
30	Effect of Crystal Structure on the Catalytic Properties of Bi4Zr2xV2â^'2xO11â^'δ Perovskites in the Decomposition of Isobutanol. Russian Journal of Physical Chemistry A, 2020, 94, 1786-1790.	0.6	1
31	NASICON Catalysts with Composition Na(Cs)1 – 2xMxZr2(PO4)3 for Transformations of Aliphatic Alcohols. Petroleum Chemistry, 2020, 60, 1176-1183.	1.4	1
32	Activity of calcined Ag,Cu,Au/TiO2 catalysts in the dehydrogenation/dehydration of ethanol. Russian Journal of Physical Chemistry A, 2015, 89, 1184-1188.	0.6	0
33	Adsorption of CO2 on skeletal cobalt and nickel zirconium phosphates after their treatment with high-frequency hydrogen and argon plasma. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 793-796.	1.1	0
34	Effect of composition and calcination temperature of ceria-zirconia-alumina mixed oxides on catalytic performances of ethanol conversion. IOP Conference Series: Materials Science and Engineering, 2017, 175, 012031.	0.6	0
35	Relationship between the crystal structure, conductive and catalytic properties of perovskites Bi4Fe2V2â°2O11â°. Mendeleev Communications, 2019, 29, 541-543.	1.6	0
36	ACTIVITY OF BI4V2-2XCU2XO11–Δ IN THE TRANSFORMATION OF ISOBUTANOL AFTER PLASMA-CHEMICAL TREATMENT. Acta Metallurgica Slovaca, 2018, 24, 75.	0.7	0

#	Article	IF	CITATIONS
37	Understanding the electron-accepting sites on the surface of cage zirconium phosphates of NASICON type doped with cobalt, nickel and copper ions. Tsvetnye Metally, 2019, , 28-33.	0.2	0