Ciro Mercurio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/593622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nature Cell Biology, 2011, 13, 292-302.	4.6	294
2	Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Reports, 2000, 1, 71-79.	2.0	190
3	Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacological Research, 2010, 62, 18-34.	3.1	121
4	Cyclin-Dependent Kinase 2 Functions in Normal DNA Repair and Is a Therapeutic Target in BRCA1-Deficient Cancers. Cancer Research, 2006, 66, 8219-8226.	0.4	114
5	Identification of <i>N</i> ,1,4,4-Tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1 <i>H</i> -pyrazolo[4,3- <i> (PHA-848125), a Potent, Orally Available Cyclin Dependent Kinase Inhibitor. Journal of Medicinal Chemistry, 2009, 52, 5152-5163.</i>	۱ <td>azoline-3-car</td>	azoline-3-car
6	Toward Highly Potent Cancer Agents by Modulating the C-2 Group of the Arylthioindole Class of Tubulin Polymerization Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 123-149.	2.9	107
7	3-Aminopyrazole Inhibitors of CDK2/Cyclin A as Antitumor Agents. 2. Lead Optimization. Journal of Medicinal Chemistry, 2005, 48, 2944-2956.	2.9	98
8	Towards Selective Inhibition of Histone Deacetylase Isoforms: What Has Been Achieved, Where We Are and What Will Be Next. ChemMedChem, 2014, 9, 523-536.	1.6	83
9	New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer. Journal of Medicinal Chemistry, 2014, 57, 6531-6552.	2.9	80
10	Drf1, a novel regulatory subunit for human Cdc7 kinase. EMBO Journal, 2002, 21, 3171-3181.	3.5	73
11	Design and Synthesis of 2-Heterocyclyl-3-arylthio-1 <i>H</i> -indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability. Journal of Medicinal Chemistry, 2011, 54, 8394-8406.	2.9	70
12	Discovery of a Novel Inhibitor of Histone Lysine-Specific Demethylase 1A (KDM1A/LSD1) as Orally Active Antitumor Agent. Journal of Medicinal Chemistry, 2016, 59, 1501-1517.	2.9	70
13	Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nature Communications, 2014, 5, 5637.	5.8	65
14	Pathology tissue–chromatin immunoprecipitation, coupled with high-throughput sequencing, allows the epigenetic profiling of patient samples. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21535-21540.	3.3	63
15	Thieno[3,2- <i>b</i>]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 2: Structure-Based Drug Design and Structure–Activity Relationship. Journal of Medicinal Chemistry, 2017, 60, 1693-1715.	2.9	60
16	Thieno[3,2- <i>b</i>]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 1: High-Throughput Screening and Preliminary Exploration. Journal of Medicinal Chemistry, 2017, 60, 1673-1692.	2.9	59
17	Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing. Bioorganic and Medicinal Chemistry, 2010, 18, 1844-1853.	1.4	58
18	3-Amino-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: A new class of CDK2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1084-1090.	1.0	56

CIRO MERCURIO

#	Article	IF	CITATIONS
19	Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid–induced differentiation. Science Advances, 2020, 6, eaax2746.	4.7	56
20	Cross platform microarray analysis for robust identification of differentially expressed genes. BMC Bioinformatics, 2007, 8, S5.	1.2	55
21	Biochemical Characterization of p16 - and p18-containing Complexes in Human Cell Lines. Journal of Biological Chemistry, 1996, 271, 15942-15949.	1.6	51
22	New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer. Journal of Medicinal Chemistry, 2015, 58, 5789-5807.	2.9	51
23	Discovery, Synthesis, and Pharmacological Evaluation of Spiropiperidine Hydroxamic Acid Based Derivatives as Structurally Novel Histone Deacetylase (HDAC) Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 3051-3064.	2.9	50
24	Synthesis, biological activity and mechanistic insights of 1-substituted cyclopropylamine derivatives: A novel class of irreversible inhibitors of histone demethylase KDM1A. European Journal of Medicinal Chemistry, 2014, 86, 352-363.	2.6	50
25	Fragmentâ€based Identification of Hsp90 Inhibitors. ChemMedChem, 2009, 4, 963-966.	1.6	49
26	Dual modulation of MCL-1 and mTOR determines the response to sunitinib. Journal of Clinical Investigation, 2016, 127, 153-168.	3.9	49
27	Dual Targeting of CDK and Tropomyosin Receptor Kinase Families by the Oral Inhibitor PHA-848125, an Agent with Broad-Spectrum Antitumor Efficacy. Molecular Cancer Therapeutics, 2010, 9, 2243-2254.	1.9	48
28	Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL. Leukemia, 2012, 26, 1630-1637.	3.3	48
29	The Antidiabetic Agent Sodium Tungstate Activates Glycogen Synthesis through an Insulin Receptor-independent Pathway. Journal of Biological Chemistry, 2003, 278, 42785-42794.	1.6	39
30	Identification of Potent Pyrazolo[4,3- <i>h</i>]quinazoline-3-carboxamides as Multi-Cyclin-Dependent Kinase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 2171-2187.	2.9	36
31	Synthesis and Biological Evaluation of N-Hydroxyphenylacrylamides and N-Hydroxypyridin-2-ylacrylamides as Novel Histone Deacetylase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 822-839.	2.9	32
32	Design and synthesis of novel isoxazole-based HDAC inhibitors. European Journal of Medicinal Chemistry, 2010, 45, 4331-4338.	2.6	30
33	Further insights into the SAR of α-substituted cyclopropylamine derivatives as inhibitors of histone demethylase KDM1A. European Journal of Medicinal Chemistry, 2015, 92, 377-386.	2.6	30
34	New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors. European Journal of Medicinal Chemistry, 2018, 152, 283-297.	2.6	30
35	Pure enantiomers of benzoylamino-tranylcypromine: LSD1 inhibition, gene modulation in human leukemia cells and effects on clonogenic potential of murine promyelocytic blasts. European Journal of Medicinal Chemistry, 2015, 94, 163-174.	2.6	28
36	Synthesis, biological characterization and molecular modeling insights of spirochromanes as potent HDAC inhibitors. European Journal of Medicinal Chemistry, 2016, 108, 53-67.	2.6	26

CIRO MERCURIO

#	Article	IF	CITATIONS
37	Pyrrole- and indole-containing tranylcypromine derivatives as novel lysine-specific demethylase 1 inhibitors active on cancer cells. MedChemComm, 2015, 6, 665-670.	3.5	24
38	Triazole-Modified Histone Deacetylase Inhibitors As a Rapid Route to Drug Discovery. ACS Combinatorial Science, 2008, 10, 624-627.	3.3	22
39	6-Substituted Pyrrolo[3,4-c]pyrazoles: An Improved Class of CDK2 Inhibitors. ChemMedChem, 2007, 2, 841-852.	1.6	21
40	Discovery of Reversible Inhibitors of KDM1A Efficacious in Acute Myeloid Leukemia Models. ACS Medicinal Chemistry Letters, 2020, 11, 754-759.	1.3	21
41	Down-Regulation of Protein Kinase CKII Activity by Sodium Butyrate. Biochemical and Biophysical Research Communications, 1997, 233, 673-677.	1.0	19
42	Antiâ€ŧumour efficacy on glioma models of <scp>PHA</scp> â€848125, a multiâ€kinase inhibitor able to cross the blood–brain barrier. British Journal of Pharmacology, 2013, 169, 156-166.	2.7	18
43	Tranylcypromineâ€Based LSD1 Inhibitors: Structureâ€Activity Relationships, Antiproliferative Effects in Leukemia, and Gene Target Modulation. ChemMedChem, 2020, 15, 643-658.	1.6	18
44	LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 2021, 13, eabf7036.	5.8	18
45	<i>tert</i> â€Butylcarbamateâ€Containing Histone Deacetylase Inhibitors: Apoptosis Induction, Cytodifferentiation, and Antiproliferative Activities in Cancer Cells. ChemMedChem, 2013, 8, 800-811.	1.6	16
46	Design, synthesis and preliminary evaluation of a series of histone deacetylase inhibitors carrying a benzodiazepine ring. European Journal of Medicinal Chemistry, 2013, 66, 56-68.	2.6	16
47	Pure Diastereomers of a Tranylcypromine-Based LSD1 Inhibitor: Enzyme Selectivity and In-Cell Studies. ACS Medicinal Chemistry Letters, 2015, 6, 173-177.	1.3	16
48	Transcriptional Analysis of an E2F Gene Signature as a Biomarker of Activity of the Cyclin-Dependent Kinase Inhibitor PHA-793887 in Tumor and Skin Biopsies from a Phase I Clinical Study. Molecular Cancer Therapeutics, 2010, 9, 1265-1273.	1.9	15
49	Synthesis and biological characterization of spiro[2H-(1,3)-benzoxazine-2,4′-piperidine] based histone deacetylase inhibitors. European Journal of Medicinal Chemistry, 2013, 64, 273-284.	2.6	14
50	Synthesis and Biological Characterization of Amidopropenyl Hydroxamates as HDAC Inhibitors. ChemMedChem, 2010, 5, 1359-1372.	1.6	13
51	Spiro[chromaneâ€2,4′â€piperidine]â€Based Histone Deacetylase Inhibitors with Improved inâ€vivo Activity. ChemMedChem, 2012, 7, 709-721.	1.6	11
52	Purification and Characterization of Recombinant Human 5′-Methylthioadenosine Phosphorylase: Definite Identification of Coding cDNA. Biochemical and Biophysical Research Communications, 1996, 223, 514-519.	1.0	10
53	3-Aroyl-1,4-diarylpyrroles Inhibit Chronic Myeloid Leukemia Cell Growth through an Interaction with Tubulin. ACS Medicinal Chemistry Letters, 2017, 8, 521-526.	1.3	8
54	Novel Pyridineâ€Based Hydroxamates and 2′â€Aminoanilides as Histone Deacetylase Inhibitors: Biochemical Profile and Anticancer Activity. ChemMedChem, 2021, 16, 989-999.	1.6	8

#	Article	IF	CITATIONS
55	Chiral Resolution and Pharmacological Characterization of the Enantiomers of the Hsp90 Inhibitor 2â€Aminoâ€7â€{4â€fluoroâ€2â€{3â€pyridyl)phenyl]â€4â€methylâ€7,8â€dihydroâ€6 <i>H</i> â€quinazolinâ€5â 2014, 9, 1574-1585.	€ one Oxin	ne6ChemMed
56	Alterations of Histone Modifications in Cancer. , 2012, , 53-87.		5
57	Novel potent inhibitors of the histone demethylase KDM1A (LSD1), orally active in a murine promyelocitic leukemia model. Future Medicinal Chemistry, 2017, 9, 1161-1174.	1.1	4
58	p16INK4 gene deletions in childhood acute lymphoblastic leukemias. Leukemia Research, 1995, 19, 883-885.	0.4	3
59	Compounds and methods for inhibiting histone demethylases: a patent evaluation of US20160102096A1. Expert Opinion on Therapeutic Patents, 2016, 26, 1367-1370.	2.4	3
60	New targets to modulate the DNA damage response. Future Medicinal Chemistry, 2018, 10, 2377-2380.	1.1	0
61	Inhibition of the Histone Demethylase LSD1 Combined with Caloric Restriction or IGF1/Insulin Inhibition Leads to Durable Responses in a Preclinical Model of Acute Myeloid Leukemia. Blood, 2015, 126, 459-459.	0.6	0