Scot J Matkovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5936121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-15 Family Regulates Postnatal Mitotic Arrest of Cardiomyocytes. Circulation Research, 2011, 109, 670-679.	4.5	406
2	MicroRNA-133a Protects Against Myocardial Fibrosis and Modulates Electrical Repolarization Without Affecting Hypertrophy in Pressure-Overloaded Adult Hearts. Circulation Research, 2010, 106, 166-175.	4.5	347
3	Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 2015, 350, aad2459.	12.6	342
4	A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nature Medicine, 2008, 14, 510-517.	30.7	297
5	Reciprocal Regulation of Myocardial microRNAs and Messenger RNA in Human Cardiomyopathy and Reversal of the microRNA Signature by Biomechanical Support. Circulation, 2009, 119, 1263-1271.	1.6	292
6	G Protein–Coupled Receptor Kinase 2 Ablation in Cardiac Myocytes Before or After Myocardial Infarction Prevents Heart Failure. Circulation Research, 2008, 103, 413-422.	4.5	210
7	Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circulation Research, 2015, 117, 346-351.	4.5	172
8	Cardiac miRâ€133a overexpression prevents early cardiac fibrosis in diabetes. Journal of Cellular and Molecular Medicine, 2014, 18, 415-421.	3.6	167
9	Cardiac-Specific Ablation of G-Protein Receptor Kinase 2 Redefines Its Roles in Heart Development and β-Adrenergic Signaling. Circulation Research, 2006, 99, 996-1003.	4.5	152
10	Nix-Mediated Apoptosis Links Myocardial Fibrosis, Cardiac Remodeling, and Hypertrophy Decompensation. Circulation, 2008, 117, 396-404.	1.6	147
11	Direct and Indirect Involvement of MicroRNA-499 in Clinical and Experimental Cardiomyopathy. Circulation Research, 2012, 111, 521-531.	4.5	133
12	Cardiomyocytes structure, function and associated pathologies. International Journal of Biochemistry and Cell Biology, 2005, 37, 1746-1751.	2.8	132
13	Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12264-12269.	7.1	128
14	MARF and Opa1 Control Mitochondrial and Cardiac Function in Drosophila. Circulation Research, 2011, 108, 12-17.	4.5	124
15	Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9035-9042.	7.1	122
16	Protein Kinase A and Two Phosphatases Are Components of the Inositol 1,4,5-Trisphosphate Receptor Macromolecular Signaling Complex. Journal of Biological Chemistry, 2002, 277, 39397-39400.	3.4	121
17	Common Variants in <i>HSPB7</i> and <i>FRMD4B</i> Associated With Advanced Heart Failure. Circulation: Cardiovascular Genetics, 2010, 3, 147-154.	5.1	119
18	Endoplasmic reticulum–mitochondria crosstalk in NIX-mediated murine cell death. Journal of Clinical Investigation, 2009, 119, 203-12.	8.2	115

#	Article	IF	CITATIONS
19	RISC RNA Sequencing for Context-Specific Identification of In Vivo MicroRNA Targets. Circulation Research, 2011, 108, 18-26.	4.5	99
20	Loss-of-function DNA sequence variant in the <i>CLCNKA</i> chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2456-2461.	7.1	95
21	Regulation of Cardiac MicroRNAs by Cardiac MicroRNAs. Circulation Research, 2013, 113, 62-71.	4.5	94
22	Postnatal β-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nature Communications, 2015, 6, 8084.	12.8	89
23	RhoA protects the mouse heart against ischemia/reperfusion injury. Journal of Clinical Investigation, 2011, 121, 3269-3276.	8.2	83
24	A Human 3′ miR-499 Mutation Alters Cardiac mRNA Targeting and Function. Circulation Research, 2012, 110, 958-967.	4.5	83
25	Deep mRNA Sequencing for In Vivo Functional Analysis of Cardiac Transcriptional Regulators. Circulation Research, 2010, 106, 1459-1467.	4.5	76
26	Widespread Down-Regulation of Cardiac Mitochondrial and Sarcomeric Genes in Patients With Sepsis*. Critical Care Medicine, 2017, 45, 407-414.	0.9	76
27	Genomic Reorganization of Lamin-Associated Domains in Cardiac Myocytes Is Associated With Differential Gene Expression and DNA Methylation in Human Dilated Cardiomyopathy. Circulation Research, 2019, 124, 1198-1213.	4.5	72
28	Ca 2+ Sparks and Waves in Canine Purkinje Cells. Circulation Research, 2005, 97, 35-43.	4.5	71
29	Cytosolic Accumulation of Small Nucleolar RNAs (snoRNAs) Is Dynamically Regulated by NADPH Oxidase. Journal of Biological Chemistry, 2015, 290, 11741-11748.	3.4	70
30	Cardiac signaling genes exhibit unexpected sequence diversity in sporadic cardiomyopathy, revealing HSPB7 polymorphisms associated with disease. Journal of Clinical Investigation, 2010, 120, 280-289.	8.2	64
31	Modulation of subsets of cardiac B lymphocytes improves cardiac function after acute injury. JCI Insight, 2018, 3, .	5.0	63
32	Regulation of the Type 1 Inositol 1,4,5-Trisphosphate Receptor by Phosphorylation at Tyrosine 353. Journal of Biological Chemistry, 2004, 279, 16311-16316.	3.4	61
33	Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19864-19869.	7.1	57
34	MicroRNA-155 Tunes Both the Threshold and Extent of NK Cell Activation via Targeting of Multiple Signaling Pathways. Journal of Immunology, 2013, 191, 5904-5913.	0.8	51
35	Evidence for Selective Coupling of α1-Adrenergic Receptors to Phospholipase C-β1 in Rat Neonatal Cardiomyocytes. Journal of Biological Chemistry, 2001, 276, 37341-37346.	3.4	50
36	Nuclear Effects of G-Protein Receptor Kinase 5 on Histone Deacetylase 5–Regulated Gene Transcription in Heart Failure. Circulation: Heart Failure, 2011, 4, 659-668.	3.9	48

#	Article	IF	CITATIONS
37	Mitochondrial Reprogramming Induced by CaMKIIδ Mediates Hypertrophy Decompensation. Circulation Research, 2015, 116, e28-39.	4.5	47
38	Receptor-Independent Cardiac Protein Kinase Cα Activation by Calpain-Mediated Truncation of Regulatory Domains. Circulation Research, 2010, 107, 903-912.	4.5	45
39	Cardiovascular consequences of KATP overactivity in Cantu syndrome. JCI Insight, 2018, 3, .	5.0	44
40	BET bromodomain inhibition attenuates cardiac phenotype in myocyte-specific lamin A/C–deficient mice. Journal of Clinical Investigation, 2020, 130, 4740-4758.	8.2	42
41	Put Your Chips on Transcriptomics. Circulation, 2008, 118, 216-218.	1.6	41
42	Ins(1,4,5)P3 receptors and inositol phosphates in the heart—evolutionary artefacts or active signal transducers?. , 2005, 107, 240-251.		39
43	TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy. JCI Insight, 2019, 4, .	5.0	39
44	Receptor-independent Protein Kinase Cα (PKCα) Signaling by Calpain-generated Free Catalytic Domains Induces HDAC5 Nuclear Export and Regulates Cardiac Transcription. Journal of Biological Chemistry, 2011, 286, 26943-26951.	3.4	38
45	Load-Dependent Changes in Left Ventricular Structure and Function in a Pathophysiologically Relevant Murine Model of Reversible Heart Failure. Circulation: Heart Failure, 2018, 11, e004351.	3.9	37
46	Inositol Polyphosphate 1-Phosphatase Is a Novel Antihypertrophic Factor. Journal of Biological Chemistry, 2002, 277, 22734-22742.	3.4	33
47	A Novel Strategy to Increase the Proliferative Potential of Adult Human β-Cells While Maintaining Their Differentiated Phenotype. PLoS ONE, 2013, 8, e66131.	2.5	32
48	Regional Differences in mRNA and IncRNA Expression Profiles in Non-Failing Human Atria and Ventricles. Scientific Reports, 2018, 8, 13919.	3.3	30
49	Loss of lipin 1â€mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice. FASEB Journal, 2019, 33, 652-667.	0.5	30
50	Ins(1,4,5)P3 and cardiac dysfunction. Cardiovascular Research, 1998, 40, 251-256.	3.8	26
51	Combined cardiomyocyte PKCδ and PKCε gene deletion uncovers their central role in restraining developmental and reactive heart growth. Science Signaling, 2015, 8, ra39.	3.6	24
52	Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Molecular and Cellular Endocrinology, 2017, 439, 328-336.	3.2	24
53	Changes of Ovarian microRNA Profile in Long-Living Ames Dwarf Mice during Aging. PLoS ONE, 2017, 12, e0169213.	2.5	23
54	Inositol 1,4,5-Trisphosphate And Reperfusion Arrhythmias. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 734-737.	1.9	22

#	Article	IF	CITATIONS
55	Ménage à Trois. Circulation Research, 2014, 114, 1362-1365.	4.5	22
56	A functional polymorphism of the GÂq (GNAQ) gene is associated with accelerated mortality in African-American heart failure. Human Molecular Genetics, 2007, 16, 2740-2750.	2.9	21
57	Mitochondrial Genome Linearization Is a Causative Factor for Cardiomyopathy in Mice and <i>Drosophila</i> . Antioxidants and Redox Signaling, 2014, 21, 1949-1959.	5.4	20
58	Nuclear export factor 3 regulates localization of small nucleolar RNAs. Journal of Biological Chemistry, 2017, 292, 20228-20239.	3.4	19
59	Immunomodulatory role of nonneuronal cholinergic signaling in myocardial injury. JCI Insight, 2019, 4, .	5.0	19
60	Ca2+-activated but Not G Protein-mediated Inositol Phosphate Responses in Rat Neonatal Cardiomyocytes Involve Inositol 1,4,5-Trisphosphate Generation. Journal of Biological Chemistry, 2000, 275, 10845-10850.	3.4	18
61	The Mechanism of High-Output Cardiac Hypertrophy Arising From Potassium Channel Gain-of-Function in Cantú Syndrome. Function, 2020, 1, zqaa004.	2.3	18
62	TNF receptor–activated factor 2 mediates cardiac protection through noncanonical NF-κB signaling. JCI Insight, 2018, 3, .	5.0	18
63	Simple nutrients bypass the requirement for HLH-30 in coupling lysosomal nutrient sensing to survival. PLoS Biology, 2019, 17, e3000245.	5.6	17
64	Epitranscriptional regulation of cardiovascular development and disease. Journal of Physiology, 2015, 593, 1799-1808.	2.9	15
65	Deep Sequencing of Cardiac MicroRNA-mRNA Interactomes in Clinical and Experimental Cardiomyopathy. Methods in Molecular Biology, 2015, 1299, 27-49.	0.9	15
66	A Nucleus-targeted Alternately Spliced Nix/Bnip3L Protein Isoform Modifies Nuclear Factor κB (NFκB)-mediated Cardiac Transcription. Journal of Biological Chemistry, 2013, 288, 15455-15465.	3.4	14
67	Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis. PLoS ONE, 2016, 11, e0156065.	2.5	12
68	Transcriptomic and Functional Analyses of Mitochondrial Dysfunction in Pressure Overloadâ€Induced Right Ventricular Failure. Journal of the American Heart Association, 2021, 10, e017835.	3.7	12
69	Transcriptome analysis in heart failure. Current Opinion in Cardiology, 2016, 31, 242-248.	1.8	11
70	Identification of Genes and Pathways Regulated by Lamin A in Heart. Journal of the American Heart Association, 2020, 9, e015690.	3.7	9
71	Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs. Circulation: Cardiovascular Genetics, 2015, 8, 774-784.	5.1	8
72	<scp>Articles</scp> : Association of An Intronic, but Not Any Exonic, <i>FRMD4B</i> Sequence Variant and Heart Failure. Clinical and Translational Science, 2010, 3, 134-139.	3.1	7

#	Article	IF	CITATIONS
73	MicroRNAs in the Stressed Heart: Sorting the Signal from the Noise. Cells, 2014, 3, 778-801.	4.1	7
74	G-protein receptor kinases 2, 5 and 6 redundantly modulate Smoothened-GATA transcriptional crosstalk in fetal mouse hearts. Journal of Molecular and Cellular Cardiology, 2018, 121, 60-68.	1.9	7
75	Multiomic approaches to delineate the pathogenesis of cardiac disease. Current Opinion in Cardiology, 2019, 34, 246-253.	1.8	5
76	When Knowing "Enough―May Still Not Be Enough. Circulation Research, 2018, 123, 412-414.	4.5	4
77	Chronic Contractile Dysfunction without Hypertrophy Does Not Provoke a Compensatory Transcriptional Response in Mouse Hearts. PLoS ONE, 2016, 11, e0158317.	2.5	3
78	Feed My Heart or Eat It. Journal of the American College of Cardiology, 2016, 68, 1572-1574.	2.8	1
79	A balancing act in cardiac hypertrophy. Cardiovascular Research, 2016, 111, 8-9.	3.8	1
80	G-Protein Receptor Kinase-5 Polymorphism Influences Therapeutic Efficacy of β-Blockers in Heart Failure. Journal of Cardiac Failure, 2006, 12, S39.	1.7	0
81	Reversibility of Signature miRNA Dysregulation in Failing Human Hearts by Mechanical Unloading. Journal of Cardiac Failure, 2008, 14, S40.	1.7	0
82	Genetic Diversity and Novel SNP Discovery in Signaling Genes Revealed by Pooled Sequencing of Cardiomyopathy DNAs. Journal of Cardiac Failure, 2009, 15, S40.	1.7	0
83	Of Caps and Gaps, Postnatal Hearts, Elusive Facts, and Incs. Circulation: Cardiovascular Genetics, 2016, 9, 389-391.	5.1	0
84	Abstract 793: Macrophage Transcription Factor EB Attenuates Left Ventricular Remodeling Via Lysosomal Lipolysis. Circulation Research, 2019, 125, .	4.5	0