
Ansuman Lahiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inclusion of chrysin in β-cyclodextrin nanocavity and its effect on antioxidant potential of chrysin: A spectroscopic and molecular modeling approach. Journal of Molecular Structure, 2010, 977, 180-188.	3.6	84
2	Computational and NMR studies of RNA duplexes with an internal pseudouridine-adenosine base pair. Scientific Reports, 2019, 9, 16278.	3.3	30
3	Molecular Dynamics of the Anticodon Domain of Yeast tRNAPhe:Codon-Anticodon Interaction. Biophysical Journal, 2000, 79, 2276-2289.	0.5	25
4	Conformational Preferences of Modified Uridines: Comparison of AMBER Derived Force Fields. Journal of Chemical Information and Modeling, 2014, 54, 1129-1142.	5.4	19
5	Genome wide gene expression regulation by HIP1 Protein Interactor, HIPPI: Prediction and validation. BMC Genomics, 2011, 12, 463.	2.8	13
6	Specificity determinants for the abscisic acid response element. FEBS Open Bio, 2013, 3, 101-105.	2.3	13
7	Reparameterizations of the <i>χ</i> Torsion and Lennard-Jones <i>σ</i> Parameters Improve the Conformational Characteristics of Modified Uridines. Journal of Computational Chemistry, 2016, 37, 1576-1588.	3.3	12
8	Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. Progress in Biophysics and Molecular Biology, 2022, 169-170, 21-52.	2.9	12
9	Comparative analysis of abscisic acidâ€regulated transcriptomes in <i>Arabidopsis</i> . Plant Biology, 2011, 13, 28-35.	3.8	11
10	Interactions of HIPPI, a molecular partner of Huntingtin interacting protein HIP1, with the specific motif present at the putative promoter sequence of the caspaseâ€1, caspaseâ€8 and caspaseâ€10 genes. FEBS Journal, 2007, 274, 3886-3899.	4.7	10
11	hsa-miR-503 Is Downregulated in \hat{I}^2 Thalassemia Major. Acta Haematologica, 2012, 128, 187-189.	1.4	10
12	Exploring the idea of self-guided dynamics. Journal of Chemical Physics, 2001, 114, 5993-5999.	3.0	9
13	Molecular dynamics simulation of the preferred conformations of 2-thiouridine in aqueous solution. Theoretical Chemistry Accounts, 2007, 117, 267-273.	1.4	9
14	Denaturation of supercoiled DNA: a Monte Carlo study. Biophysical Chemistry, 1998, 75, 177-186.	2.8	7
15	Examining the characteristics of chaos in biomolecular dynamics: a random matrix approximation. Chemical Physics Letters, 1999, 311, 459-466.	2.6	7
16	Theoretical Analysis of the Excited State Properties of Wybutine: A Natural Probe for Transfer RNA Dynamics. International Journal of Molecular Sciences, 2004, 5, 75-83.	4.1	6
17	LNA-induced dynamic stability in a therapeutic aptamer: insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2023, 41, 2221-2230.	3.5	6
18	Effect of supercoiling on the melting characteristics of heteropolynucleotides. Biophysical Chemistry, 1991, 40, 33-41.	2.8	5

Ansuman Lahiri

#	Article	IF	CITATIONS
19	Melting characteristics of highly supercoiled DNA. Biophysical Chemistry, 1992, 42, 229-234.	2.8	5
20	Properties of dianionic oxyphosphorane intermediates from hybrid QM/MM simulation: implications for ribozyme reactions. Computational and Theoretical Chemistry, 1997, 419, 51-55.	1.5	5
21	Molecular Dynamics Simulation of the Conformational Preferences of Pseudouridine Derivatives: Improving the Distribution in the Glycosidic Torsion Space. Journal of Chemical Information and Modeling, 2020, 60, 4995-5002.	5.4	5
22	Rapid communication capturing the destabilizing effect of dihydrouridine through molecular simulations. Biopolymers, 2014, 101, 985-991.	2.4	4
23	Data-informed reparameterization of modified RNA and the effect of explicit water models: application to pseudouridine and derivatives. Journal of Computer-Aided Molecular Design, 2022, 36, 205-224.	2.9	4
24	Structure and energetics of plectonemically supercoiled DNA. Biopolymers, 1994, 34, 799-804.	2.4	3
25	Effect of Inactivating Mutations on Peptide Conformational Ensembles: The Plant Polypeptide Hormone Systemin. Journal of Chemical Information and Modeling, 2016, 56, 1267-1281.	5.4	3
26	TRABAS: a database for transcription regulation by ABA signaling. In Silico Biology, 2008, 8, 511-6.	0.9	3
27	Theory of a supercoil-induced B-Z transition in closed circular DNA. Computational and Theoretical Chemistry, 1991, 230, 431-435.	1.5	2
28	Ligand binding isotherm for DNA in the presence of supercoil-induced non-B form: a theoretical analysis. Biophysical Chemistry, 1996, 58, 239-243.	2.8	2
29	DYNAMICS OF LEUCINE-RICH REPEAT PROTEINS. Biophysical Reviews and Letters, 2007, 02, 207-219.	0.8	2
30	Arabidopsis thaliana regulatory element analyzer. Bioinformatics, 2008, 24, 2263-2264.	4.1	2
31	Ensemble Allosteric Model for the Modified Wobble Hypothesis. Journal of Physical Chemistry Letters, 2020, 11, 6337-6343.	4.6	2
32	Comparative study of the SBP-box gene family in rice siblings. Journal of Biosciences, 2020, 45, 1.	1.1	2
33	Influencing the B-Z switch in supercoiled DNA. Biophysical Chemistry, 1991, 39, 85-90.	2.8	1
34	Computational approach to the study of supercoil-induced structural polymorphism in DNA. Computational and Theoretical Chemistry, 1993, 286, 211-218.	1.5	1
35	Probing the functional conformations of an atypical proline-rich fusion peptide. Physical Chemistry Chemical Physics, 2019, 21, 20727-20742.	2.8	1
36	Structural Stability of the Anticodon Stem Loop Domains of the Unmodified Yeast and <i>Escherichia coli</i> tRNA ^{Phe} : Differing Views from Different Force Fields. ACS Omega, 2019, 4, 3029-3044.	3.5	1

Ansuman Lahiri

#	Article	IF	CITATIONS
37	Dynamical Features of Cognate Site Recognition in bZIP–DNA Interaction. ACS Omega, 2019, 4, 292-308.	3.5	1
38	Theoretical analysis of gel electrophoretic data for interaction of lysine rich histone with- supercoiled DNA. Biophysical Chemistry, 1992, 42, 223-228.	2.8	0
39	A semiempirical expression for the gel electrophoretic mobility of supercoiled DNA. Biopolymers, 1992, 32, 893-896.	2.4	Ο
40	Role of tryptophan 135 of Chandipura virus phosphoprotein P in dimerization and complex formation with leader RNA: structural aspect using time resolved anisotropy and simulation. RSC Advances, 2015, 5, 104582-104593.	3.6	0
41	Plant Polypeptide Hormone Systemin Prefers Polyproline II Conformation in Solution. ACS Omega, 2017, 2, 6831-6843.	3.5	0