Juntao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935967/publications.pdf

Version: 2024-02-01

159358 123241 4,922 62 30 61 h-index citations g-index papers 62 62 62 6938 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effective Suzuki coupling reaction enabled by palladium–polycarbene catalyst derived from porous polyimidazolium. Journal of Porous Materials, 2022, 29, 601-608.	1.3	3
2	Structure and Properties of PVDF/PA6 Blends Compatibilized by Ionic Liquid-Grafted PA6. ACS Omega, 2022, 7, 12772-12778.	1.6	5
3	A Knitting Copolymerization Strategy to Build Porous Polytriazolium Salts for Removal of Anionic Dyes and MnO ₄ ^{â^'} . Macromolecular Rapid Communications, 2022, 43, e2200170.	2.0	4
4	Boosting SO ₂ Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets. Industrial & Department of the State of the Sta	1.8	2
5	Processable hypercrosslinked ionic networks for effective removal of methyl orange. Separation and Purification Technology, 2021, 258, 117986.	3.9	13
6	Phenothiazine-based conjugated microporous polymers: Pore surface and bandgap engineering for visible light-driven aerobic oxidative cyanation. Chemical Engineering Journal, 2021, 408, 127261.	6.6	27
7	Polarization-induced charge separation in conjugated microporous polymers for efficient visible light-driven C-3 selenocyanation of indoles. Chemical Science, 2021, 12, 5631-5637.	3.7	28
8	Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions. Carbohydrate Polymers, 2021, 256, 117558.	5.1	18
9	Enhanced iodine capture by incorporating anionic phosphate unit into porous networks. Separation and Purification Technology, 2021, 279, 119799.	3.9	7
10	Visible-light-driven Cr(<scp>vi</scp>) reduction by ferrocene-integrated conjugated porous polymers <i>via</i> dual catalytic routes. Chemical Communications, 2021, 57, 4886-4889.	2.2	11
11	One-pot construction of nitrogen-rich polymeric ionic porous networks for effective CO ₂ capture and fixation. Polymer Chemistry, 2021, 13, 121-129.	1.9	3
12	Ferrocene-based porous organic polymers for high-affinity iodine capture. Chemical Engineering Journal, 2020, 380, 122420.	6.6	93
13	Self-healing stimuli-responsive cellulose nanocrystal hydrogels. Carbohydrate Polymers, 2020, 229, 115486.	5.1	60
14	Facile preparation of CoO nanoparticles embedded N-doped porous carbon from conjugated microporous polymer for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 562, 550-557.	5.0	20
15	Polyethylenimine-modified chitosan materials for the recovery of La(III) from leachates of bauxite residue. Chemical Engineering Journal, 2020, 388, 124307.	6.6	86
16	Effect of Molecular Architecture and Composition on the Aggregation Pathways of POEGMA Random Copolymers in Water. Langmuir, 2020, 36, 15018-15029.	1.6	18
17	Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Materials, 2020, 32, 178-184.	9.5	45
18	Carbodiimide coupling versus click chemistry for nanoparticle surface functionalization: A comparative study for the encapsulation of sodium cholate by cellulose nanocrystals modified with \hat{l}^2 -cyclodextrin. Carbohydrate Polymers, 2020, 244, 116512.	5.1	16

#	Article	IF	Citations
19	Stable Non-Covalent Co(Salphen)-Based Polymeric Catalyst for Highly Efficient and Selective Oxidation of 2,3,6-Trimethylphenol. Polymers, 2020, 12, 1076.	2.0	3
20	An Azo-bridged porous organic polymers modified poly(phthalazinone ether sulfone ketone) membrane for efficient O2/N2 separation. Separation and Purification Technology, 2020, 248, 117044.	3.9	4
21	Functionalized cellulose nanocrystals as the performance regulators of poly(\hat{l}^2 -hydroxybutyrate-co-valerate) biocomposites. Carbohydrate Polymers, 2020, 242, 116399.	5.1	16
22	Covalent-organic frameworks (COFs)-based membranes for CO2 separation. Journal of CO2 Utilization, 2020, 41, 101224.	3.3	31
23	A Vinyleneâ€Bridged Conjugated Covalent Triazine Polymer as a Visibleâ€Lightâ€Active Photocatalyst for Degradation of Methylene Blue. Macromolecular Rapid Communications, 2020, 41, e2000006.	2.0	15
24	Phenothiazine core promoted charge transfer in conjugated microporous polymers for photocatalytic Ugi-type reaction and aerobic selenation of indoles. Applied Catalysis B: Environmental, 2020, 272, 118982.	10.8	42
25	Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horizons, 2020, 5, 607-627.	4.1	71
26	Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics. Cellulose, 2019, 26, 7753-7767.	2.4	78
27	Building metal-functionalized porous carbons from microporous organic polymers for CO ₂ capture and conversion under ambient conditions. Catalysis Science and Technology, 2019, 9, 4422-4428.	2.1	12
28	Carbazole-Bearing Porous Organic Polymers with a Mulberry-Like Morphology for Efficient Iodine Capture. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27335-27342.	4.0	90
29	Ionic Liquidsâ€Based Membranes for Carbon Dioxide Separation. Israel Journal of Chemistry, 2019, 59, 824-831.	1.0	12
30	Fluorescent porous organic polymers. Polymer Chemistry, 2019, 10, 1168-1181.	1.9	92
31	Self-assembled polymeric micelles as amphiphilic particulate emulsifiers for controllable Pickering emulsions. Materials Chemistry Frontiers, 2019, 3, 356-364.	3.2	45
32	Benzodithiophenedioneâ€Based Conjugated Microporous Polymer Catalysts for Aerobic Oxidation Reactions Driven by Visibleâ€Light. ChemPhotoChem, 2019, 3, 645-651.	1.5	14
33	Engineering pore surface and morphology of microporous organic polymers for improved affinity towards CO2. Chemical Engineering Journal, 2019, 373, 338-344.	6.6	16
34	Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal. Chemical Engineering Journal, 2019, 371, 314-318.	6.6	42
35	Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydrate Polymers, 2019, 208, 404-412.	5.1	168
36	Flexible Ketone-bridged organic porous nanospheres: Promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation. Chemical Engineering Journal, 2019, 358, 1383-1389.	6.6	19

#	Article	IF	CITATIONS
37	Nanopolysaccharides in Emulsion Stabilization. Springer Series in Biomaterials Science and Engineering, 2019, , 221-254.	0.7	3
38	Nanopolysaccharides-Based Green Additives. Springer Series in Biomaterials Science and Engineering, 2019, , 367-388.	0.7	0
39	Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose, 2018, 25, 3229-3240.	2.4	34
40	Surface-Segregation-Induced Nanopapillae on FDTS-Blended PDMS Film and Implications in Wettability, Adhesion, and Friction Behaviors. ACS Applied Materials & English Segregation (19, 7476-7486).	4.0	6
41	Applications of nanotechnology in oil and gas industry: Progress and perspective. Canadian Journal of Chemical Engineering, 2018, 96, 91-100.	0.9	77
42	Porous Organic Polymers: An Emerged Platform for Photocatalytic Water Splitting. Frontiers in Chemistry, 2018, 6, 592.	1.8	51
43	Amphiphilic Cellulose Nanocrystals for Enhanced Pickering Emulsion Stabilization. Langmuir, 2018, 34, 12897-12905.	1.6	107
44	Uniform poly(phosphazene–triazine) porous microspheres for highly efficient iodine removal. Chemical Communications, 2018, 54, 8450-8453.	2.2	101
45	Visible Light-Driven C-3 Functionalization of Indoles over Conjugated Microporous Polymers. ACS Catalysis, 2018, 8, 8084-8091.	5.5	113
46	Functionalization of cellulose nanocrystals for advanced applications. Journal of Colloid and Interface Science, 2017, 494, 397-409.	5.0	351
47	A quasi-hexagonal prism-shaped carbon nitride for photoreduction of carbon dioxide under visible light. Environmental Science and Pollution Research, 2017, 24, 8219-8229.	2.7	9
48	Recent advances in the application of cellulose nanocrystals. Current Opinion in Colloid and Interface Science, 2017, 29, 32-45.	3.4	456
49	Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chemistry, 2017, 19, 4816-4828.	4.6	200
50	One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Scientific Reports, 2017, 7, 15811.	1.6	89
51	Stimuli-Responsive Cellulose Nanocrystals for Surfactant-Free Oil Harvesting. Biomacromolecules, 2016, 17, 1748-1756.	2.6	93
52	A Nitrogen and Sulfur Dualâ€Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 6021-6028.	11.1	703
53	Polyrhodanine Coated Cellulose Nanocrystals: A Sustainable Antimicrobial Agent. ACS Sustainable Chemistry and Engineering, 2015, 3, 1801-1809.	3.2	63
54	Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter, 2015, 11, 3512-3529.	1.2	486

#	Article	IF	CITATIONS
55	Mussel-Inspired Green Metallization of Silver Nanoparticles on Cellulose Nanocrystals and Their Enhanced Catalytic Reduction of 4-Nitrophenol in the Presence of Î ² -Cyclodextrin. Industrial & Engineering Chemistry Research, 2015, 54, 3299-3308.	1.8	164
56	Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. Journal of Materials Chemistry B, 2015, 3, 603-611.	2.9	142
57	Polyrhodanine coated cellulose nanocrystals as optical pH indicators. RSC Advances, 2014, 4, 60249-60252.	1.7	26
58	Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 19268-19274.	5.2	88
59	Smooth, stable and optically transparent microcapsules prepared by one-step method using sodium carboxymethyl cellulose as protective colloid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 65-73.	2.3	17
60	Dual Responsive Pickering Emulsion Stabilized by Poly[2-(dimethylamino)ethyl methacrylate] Grafted Cellulose Nanocrystals. Biomacromolecules, 2014, 15, 3052-3060.	2.6	275
61	Effects of process parameters on the physical properties of poly (urea–formaldehyde) microcapsules prepared by a one-step method. Iranian Polymer Journal (English Edition), 2013, 22, 665-675.	1.3	15
62	Role of ammonium chloride in preparing poly(ureaâ€formaldehyde) microcapsules using oneâ€step method. Journal of Applied Polymer Science, 2013, 129, 2848-2856.	1.3	24