
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935967/publications.pdf Version: 2024-02-01

Ιμητλο Τλης

#	Article	IF	CITATIONS
1	A Nitrogen and Sulfur Dualâ€Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 6021-6028.	11.1	703
2	Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter, 2015, 11, 3512-3529.	1.2	486
3	Recent advances in the application of cellulose nanocrystals. Current Opinion in Colloid and Interface Science, 2017, 29, 32-45.	3.4	456
4	Functionalization of cellulose nanocrystals for advanced applications. Journal of Colloid and Interface Science, 2017, 494, 397-409.	5.0	351
5	Dual Responsive Pickering Emulsion Stabilized by Poly[2-(dimethylamino)ethyl methacrylate] Grafted Cellulose Nanocrystals. Biomacromolecules, 2014, 15, 3052-3060.	2.6	275
6	Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chemistry, 2017, 19, 4816-4828.	4.6	200
7	Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydrate Polymers, 2019, 208, 404-412.	5.1	168
8	Mussel-Inspired Green Metallization of Silver Nanoparticles on Cellulose Nanocrystals and Their Enhanced Catalytic Reduction of 4-Nitrophenol in the Presence of β-Cyclodextrin. Industrial & Engineering Chemistry Research, 2015, 54, 3299-3308.	1.8	164
9	Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. Journal of Materials Chemistry B, 2015, 3, 603-611.	2.9	142
10	Visible Light-Driven C-3 Functionalization of Indoles over Conjugated Microporous Polymers. ACS Catalysis, 2018, 8, 8084-8091.	5.5	113
11	Amphiphilic Cellulose Nanocrystals for Enhanced Pickering Emulsion Stabilization. Langmuir, 2018, 34, 12897-12905.	1.6	107
12	Uniform poly(phosphazene–triazine) porous microspheres for highly efficient iodine removal. Chemical Communications, 2018, 54, 8450-8453.	2.2	101
13	Stimuli-Responsive Cellulose Nanocrystals for Surfactant-Free Oil Harvesting. Biomacromolecules, 2016, 17, 1748-1756.	2.6	93
14	Ferrocene-based porous organic polymers for high-affinity iodine capture. Chemical Engineering Journal, 2020, 380, 122420.	6.6	93
15	Fluorescent porous organic polymers. Polymer Chemistry, 2019, 10, 1168-1181.	1.9	92
16	Carbazole-Bearing Porous Organic Polymers with a Mulberry-Like Morphology for Efficient lodine Capture. ACS Applied Materials & Interfaces, 2019, 11, 27335-27342.	4.0	90
17	One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Scientific Reports, 2017, 7, 15811.	1.6	89
18	Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 19268-19274.	5.2	88

#	Article	IF	CITATIONS
19	Polyethylenimine-modified chitosan materials for the recovery of La(III) from leachates of bauxite residue. Chemical Engineering Journal, 2020, 388, 124307.	6.6	86
20	Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics. Cellulose, 2019, 26, 7753-7767.	2.4	78
21	Applications of nanotechnology in oil and gas industry: Progress and perspective. Canadian Journal of Chemical Engineering, 2018, 96, 91-100.	0.9	77
22	Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horizons, 2020, 5, 607-627.	4.1	71
23	Polyrhodanine Coated Cellulose Nanocrystals: A Sustainable Antimicrobial Agent. ACS Sustainable Chemistry and Engineering, 2015, 3, 1801-1809.	3.2	63
24	Self-healing stimuli-responsive cellulose nanocrystal hydrogels. Carbohydrate Polymers, 2020, 229, 115486.	5.1	60
25	Porous Organic Polymers: An Emerged Platform for Photocatalytic Water Splitting. Frontiers in Chemistry, 2018, 6, 592.	1.8	51
26	Self-assembled polymeric micelles as amphiphilic particulate emulsifiers for controllable Pickering emulsions. Materials Chemistry Frontiers, 2019, 3, 356-364.	3.2	45
27	Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Materials, 2020, 32, 178-184.	9.5	45
28	Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal. Chemical Engineering Journal, 2019, 371, 314-318.	6.6	42
29	Phenothiazine core promoted charge transfer in conjugated microporous polymers for photocatalytic Ugi-type reaction and aerobic selenation of indoles. Applied Catalysis B: Environmental, 2020, 272, 118982.	10.8	42
30	Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose, 2018, 25, 3229-3240.	2.4	34
31	Covalent-organic frameworks (COFs)-based membranes for CO2 separation. Journal of CO2 Utilization, 2020, 41, 101224.	3.3	31
32	Polarization-induced charge separation in conjugated microporous polymers for efficient visible light-driven C-3 selenocyanation of indoles. Chemical Science, 2021, 12, 5631-5637.	3.7	28
33	Phenothiazine-based conjugated microporous polymers: Pore surface and bandgap engineering for visible light-driven aerobic oxidative cyanation. Chemical Engineering Journal, 2021, 408, 127261.	6.6	27
34	Polyrhodanine coated cellulose nanocrystals as optical pH indicators. RSC Advances, 2014, 4, 60249-60252.	1.7	26
35	Role of ammonium chloride in preparing poly(ureaâ€formaldehyde) microcapsules using oneâ€step method. Journal of Applied Polymer Science, 2013, 129, 2848-2856.	1.3	24
36	Facile preparation of CoO nanoparticles embedded N-doped porous carbon from conjugated microporous polymer for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 562, 550-557.	5.0	20

#	Article	IF	CITATIONS
37	Flexible Ketone-bridged organic porous nanospheres: Promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation. Chemical Engineering Journal, 2019, 358, 1383-1389.	6.6	19
38	Effect of Molecular Architecture and Composition on the Aggregation Pathways of POEGMA Random Copolymers in Water. Langmuir, 2020, 36, 15018-15029.	1.6	18
39	Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions. Carbohydrate Polymers, 2021, 256, 117558.	5.1	18
40	Smooth, stable and optically transparent microcapsules prepared by one-step method using sodium carboxymethyl cellulose as protective colloid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 65-73.	2.3	17
41	Engineering pore surface and morphology of microporous organic polymers for improved affinity towards CO2. Chemical Engineering Journal, 2019, 373, 338-344.	6.6	16
42	Carbodiimide coupling versus click chemistry for nanoparticle surface functionalization: A comparative study for the encapsulation of sodium cholate by cellulose nanocrystals modified with β-cyclodextrin. Carbohydrate Polymers, 2020, 244, 116512.	5.1	16
43	Functionalized cellulose nanocrystals as the performance regulators of poly(β-hydroxybutyrate-co-valerate) biocomposites. Carbohydrate Polymers, 2020, 242, 116399.	5.1	16
44	Effects of process parameters on the physical properties of poly (urea–formaldehyde) microcapsules prepared by a one-step method. Iranian Polymer Journal (English Edition), 2013, 22, 665-675.	1.3	15
45	A Vinyleneâ€Bridged Conjugated Covalent Triazine Polymer as a Visibleâ€Lightâ€Active Photocatalyst for Degradation of Methylene Blue. Macromolecular Rapid Communications, 2020, 41, e2000006.	2.0	15
46	Benzodithiophenedioneâ€Based Conjugated Microporous Polymer Catalysts for Aerobic Oxidation Reactions Driven by Visibleâ€Light. ChemPhotoChem, 2019, 3, 645-651.	1.5	14
47	Processable hypercrosslinked ionic networks for effective removal of methyl orange. Separation and Purification Technology, 2021, 258, 117986.	3.9	13
48	Building metal-functionalized porous carbons from microporous organic polymers for CO ₂ capture and conversion under ambient conditions. Catalysis Science and Technology, 2019, 9, 4422-4428.	2.1	12
49	lonic Liquidsâ€Based Membranes for Carbon Dioxide Separation. Israel Journal of Chemistry, 2019, 59, 824-831.	1.0	12
50	Visible-light-driven Cr(<scp>vi</scp>) reduction by ferrocene-integrated conjugated porous polymers <i>via</i> dual catalytic routes. Chemical Communications, 2021, 57, 4886-4889.	2.2	11
51	A quasi-hexagonal prism-shaped carbon nitride for photoreduction of carbon dioxide under visible light. Environmental Science and Pollution Research, 2017, 24, 8219-8229.	2.7	9
52	Enhanced iodine capture by incorporating anionic phosphate unit into porous networks. Separation and Purification Technology, 2021, 279, 119799.	3.9	7
53	Surface-Segregation-Induced Nanopapillae on FDTS-Blended PDMS Film and Implications in Wettability, Adhesion, and Friction Behaviors. ACS Applied Materials & Interfaces, 2018, 10, 7476-7486.	4.0	6
54	Structure and Properties of PVDF/PA6 Blends Compatibilized by Ionic Liquid-Grafted PA6. ACS Omega, 2022, 7, 12772-12778.	1.6	5

#	Article	IF	CITATIONS
55	An Azo-bridged porous organic polymers modified poly(phthalazinone ether sulfone ketone) membrane for efficient O2/N2 separation. Separation and Purification Technology, 2020, 248, 117044.	3.9	4
56	A Knitting Copolymerization Strategy to Build Porous Polytriazolium Salts for Removal of Anionic Dyes and MnO ₄ ^{â^'} . Macromolecular Rapid Communications, 2022, 43, e2200170.	2.0	4
57	Stable Non-Covalent Co(Salphen)-Based Polymeric Catalyst for Highly Efficient and Selective Oxidation of 2,3,6-Trimethylphenol. Polymers, 2020, 12, 1076.	2.0	3
58	Nanopolysaccharides in Emulsion Stabilization. Springer Series in Biomaterials Science and Engineering, 2019, , 221-254.	0.7	3
59	One-pot construction of nitrogen-rich polymeric ionic porous networks for effective CO ₂ capture and fixation. Polymer Chemistry, 2021, 13, 121-129.	1.9	3
60	Effective Suzuki coupling reaction enabled by palladium–polycarbene catalyst derived from porous polyimidazolium. Journal of Porous Materials, 2022, 29, 601-608.	1.3	3
61	Boosting SO ₂ Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets. Industrial & Engineering Chemistry Research, 2022, 61, 9785-9794.	1.8	2
62	Nanopolysaccharides-Based Green Additives. Springer Series in Biomaterials Science and Engineering, 2019, , 367-388.	0.7	0