Kirk Loren Overmyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosome-level genome assembly of the diploid blueberry Vaccinium darrowii provides insights into its subtropical adaptation and cuticle synthesis. Plant Communications, 2022, 3, 100307.	7.7	10
2	Distinct <i>Taphrina</i> strains from the phyllosphere of birch exhibiting a range of witches' broom disease symptoms. Environmental Microbiology, 2022, 24, 3549-3564.	3.8	2
3	Rootâ€ŧype <scp>ferredoxinâ€NADP</scp> ⁺ oxidoreductase isoforms in <scp><i>Arabidopsis thaliana</i></scp> : Expression patterns, location and stress responses. Plant, Cell and Environment, 2021, 44, 548-558.	5.7	3
4	Dissecting Contrasts in Cell Death, Hormone, and Defense Signaling in Response to Botrytis cinerea and Reactive Oxygen Species. Molecular Plant-Microbe Interactions, 2021, 34, 75-87.	2.6	7
5	Image-Based Methods to Score Fungal Pathogen Symptom Progression and Severity in Excised Arabidopsis Leaves. Plants, 2021, 10, 158.	3.5	15
6	Case study of a rhizosphere microbiome assay on a bamboo rhizome with excessive shoots. Forestry Research, 2021, 1, 1-10.	1.1	1
7	A novel Arabidopsis phyllosphere resident Protomyces species and a re-examination of genus Protomyces based on genome sequence data. IMA Fungus, 2021, 12, 8.	3.8	11
8	Genetic resistance and tumour morphology in birch infected with <i>Taphrina betulina</i> . Forest Pathology, 2021, 51, e12709.	1.1	1
9	Comparative Genomics Reveals Potential Mechanisms of Plant Beneficial Effects of a Novel Bamboo-Endophytic Bacterial Isolate Paraburkholderia sacchari Suichang626. Frontiers in Microbiology, 2021, 12, 686998.	3.5	5
10	PROTEIN PHOSPHATASE 2A-B′ <i>γ</i> Controls <i>Botrytis cinerea</i> Resistance and Developmental Leaf Senescence. Plant Physiology, 2020, 182, 1161-1181.	4.8	25
11	Altered redox processes, defense responses, and flowering time are associated with survival of the temperate Camelina sativa under subtropical conditions. Environmental and Experimental Botany, 2020, 177, 104132.	4.2	1
12	Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. Journal of Experimental Botany, 2019, 70, 5971-5984.	4.8	38
13	Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis. Free Radical Biology and Medicine, 2019, 134, 555-566.	2.9	51
14	Arabidopsis MLO2 is a negative regulator of sensitivity to extracellular reactive oxygen species. Plant, Cell and Environment, 2018, 41, 782-796.	5.7	24
15	Interaction points in plant stress signaling pathways. Physiologia Plantarum, 2018, 162, 191-204.	5.2	23
16	The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure. Plant Cell, 2018, 30, 2813-2837.	6.6	95
17	Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.	21.4	221
18	<scp>PP</scp> 2Aâ€B′γ modulates foliar <i>trans</i> â€methylation capacity and the formation of 4â€methoxyâ€indolâ€3â€ylâ€methyl glucosinolate in Arabidopsis leaves. Plant Journal, 2017, 89, 112-127.	5.7	23

KIRK LOREN OVERMYER

#	Article	IF	CITATIONS
19	The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana. Scientific Reports, 2016, 6, 39403.	3.3	38
20	Dissecting Abscisic Acid Signaling Pathways Involved in Cuticle Formation. Molecular Plant, 2016, 9, 926-938.	8.3	72
21	A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO ₂ -Induced Stomatal Closure. Plant Cell, 2016, 28, 2493-2509.	6.6	89
22	Integration of photosynthesis, development and stress as an opportunity for plant biology. New Phytologist, 2015, 208, 647-655.	7.3	25
23	Increased transcriptome sequencing efficiency with modified Mint-2 digestion–ligation protocol. Analytical Biochemistry, 2015, 477, 38-40.	2.4	2
24	Transcriptomics and Functional Genomics of ROS-Induced Cell Death Regulation by RADICAL-INDUCED CELL DEATH1. PLoS Genetics, 2014, 10, e1004112.	3.5	88
25	<i>Post mortem</i> function of <scp>A</scp> t <scp>MC</scp> 9 in xylem vessel elements. New Phytologist, 2013, 200, 498-510.	7.3	117
26	Genome Sequencing of the Plant Pathogen <i>Taphrina deformans</i> , the Causal Agent of Peach Leaf Curl. MBio, 2013, 4, e00055-13.	4.1	81
27	Regulation of <scp>ABA</scp> dependent wound induced spreading cell death by <scp>MYB</scp> 108. New Phytologist, 2013, 200, 634-640.	7.3	70
28	Apoplastic Reactive Oxygen Species Transiently Decrease Auxin Signaling and Cause Stress-Induced Morphogenic Response in Arabidopsis Â. Plant Physiology, 2011, 157, 1866-1883.	4.8	154
29	The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genomics, 2010, 11, 170.	2.8	101
30	Plant ROS and RNS: making plant science more radical than ever. Physiologia Plantarum, 2010, 138, 357-359.	5.2	8
31	The transcription factor interacting protein RCD1 contains a novel conserved domain. Plant Signaling and Behavior, 2010, 5, 78-80.	2.4	42
32	Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant Journal, 2009, 60, 268-279.	5.7	156
33	Stress Signaling III: Reactive Oxygen Species (ROS). , 2009, , 91-102.		10
34	Reactive Oxygen Species in Ozone Toxicity. Signaling and Communication in Plants, 2009, , 191-207.	0.7	5
35	Complex phenotypic profiles leading to ozone sensitivity in <i>Arabidopsis thaliana</i> mutants. Plant, Cell and Environment, 2008, 31, 1237-1249.	5.7	69
36	Ozone-Induced Programmed Cell Death in the Arabidopsis radical-induced cell death1 Mutant. Plant Physiology, 2005, 137, 1092-1104.	4.8	178

KIRK LOREN OVERMYER

#	Article	IF	CITATIONS
37	Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein–Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses. Plant Cell, 2004, 16, 1925-1937.	6.6	217
38	Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death inArabidopsis. Plant Journal, 2004, 39, 59-69.	5.7	109
39	Differential responses of Gâ€protein Arabidopsis thaliana mutants to ozone. New Phytologist, 2004, 162, 633-641.	7.3	39
40	Reactive oxygen species and hormonal control of cell death. Trends in Plant Science, 2003, 8, 335-342.	8.8	599
41	Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant, Cell and Environment, 2002, 25, 717-726.	5.7	273
42	Ozone-Induced Cell Death. Tree Physiology, 2001, , 81-92.	2.5	0
43	Ozone-Sensitive Arabidopsis rcd1 Mutant Reveals Opposite Roles for Ethylene and Jasmonate Signaling Pathways in Regulating Superoxide-Dependent Cell Death. Plant Cell, 2000, 12, 1849-1862.	6.6	491
44	Enrichment of chromosome specific hncDNAs by magnetic bead coupled Alu sequences. Molecular Biology Reports, 1996, 22, 53-57.	2.3	1
45	Isolation and localization of transcribed sequences on human chromosome 22. Cytogenetic and Genome Research, 1995, 71, 81-85.	1.1	1
46	Generation of a chromosome-22-specific c-DNA library as confirmed by FISH analysis. Human Genetics, 1993, 92, 623-626.	3.8	8
47	Reactive Oxygen in Abiotic Stress Perception - From Genes to Proteins. , 0, , .		4