
Berta Esteban Fernandez De Avila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935869/publications.pdf

Version: 2024-02-01

Berta Esteban Fernandez De

#	Article	IF	CITATIONS
1	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
2	A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Advanced Science, 2021, 8, 2100389.	5.6	23
3	Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor Immunity. Advanced Materials, 2021, 33, e2103505.	11.1	38
4	Fantastic Voyage of Nanomotors into the Cell. ACS Nano, 2020, 14, 9423-9439.	7.3	144
5	Zinc Microrocket Pills: Fabrication and Characterization toward Active Oral Delivery. Advanced Healthcare Materials, 2020, 9, e2000900.	3.9	25
6	Multicompartment Tubular Micromotors Toward Enhanced Localized Active Delivery. Advanced Materials, 2020, 32, e2000091.	11.1	80
7	Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Science Robotics, 2020, 5, .	9.9	236
8	Active Delivery of VLPs Promotes Antiâ€Tumor Activity in a Mouse Ovarian Tumor Model. Small, 2020, 16, e1907150.	5.2	40
9	Rapid Detection of AlB1 in Breast Cancer Cells Based on Aptamerâ€Functionalized Nanomotors. ChemPhysChem, 2019, 20, 3177-3180.	1.0	38
10	A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano, 2019, 13, 11996-12005.	7.3	81
11	Acoustic Nanomotors for Detection of Human Papillomavirus–Associated Head and Neck Cancer. Otolaryngology - Head and Neck Surgery, 2019, 161, 814-822.	1.1	36
12	Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia. Nano Letters, 2019, 19, 7816-7826.	4.5	54
13	A Macrophage–Magnesium Hybrid Biomotor: Fabrication and Characterization. Advanced Materials, 2019, 31, e1901828.	11.1	76
14	Rotibot: Use of Rotifers as Selfâ€Propelling Biohybrid Microcleaners. Advanced Functional Materials, 2019, 29, 1900658.	7.8	37
15	Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. Nano Letters, 2019, 19, 1914-1921.	4.5	152
16	Wearable biosensors for healthcare monitoring. Nature Biotechnology, 2019, 37, 389-406.	9.4	1,895
17	Direct electrochemical biosensing in gastrointestinal fluids. Analytical and Bioanalytical Chemistry, 2019, 411, 4597-4604.	1.9	37
18	Micromotors for "Chemistry-on-the-Fly― Journal of the American Chemical Society, 2018, 140, 3810-3820.	6.6	167

Berta Esteban Fernandez De

#	Article	IF	CITATIONS
19	Micromotors Go In Vivo: From Test Tubes to Live Animals. Advanced Functional Materials, 2018, 28, 1705640.	7.8	106
20	Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasoundâ€Propelled Nanomotors. Angewandte Chemie - International Edition, 2018, 57, 2657-2661.	7.2	187
21	Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews, 2018, 125, 94-101.	6.6	125
22	Biomimetic Plateletâ€Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials, 2018, 30, 1704800.	11.1	139
23	Bioinspired Chemical Communication between Synthetic Nanomotors. Angewandte Chemie - International Edition, 2018, 57, 241-245.	7.2	54
24	Delayed Sensor Activation Based on Transient Coatings: Biofouling Protection in Complex Biofluids. Journal of the American Chemical Society, 2018, 140, 14050-14053.	6.6	59
25	Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics, 2018, 3, .	9.9	190
26	Micromotor Pills as a Dynamic Oral Delivery Platform. ACS Nano, 2018, 12, 8397-8405.	7.3	104
27	Cell-Like Micromotors. Accounts of Chemical Research, 2018, 51, 1901-1910.	7.6	128
28	Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors. Advanced Biology, 2018, 2, 1700160.	3.0	98
29	Micromotors Spontaneously Neutralize Gastric Acid for pHâ€Responsive Payload Release. Angewandte Chemie - International Edition, 2017, 56, 2156-2161.	7.2	175
30	Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale, 2017, 9, 2195-2200.	2.8	127
31	Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2017, 2, .	9.9	1,018
32	Rapid micromotor-based naked-eye immunoassay. Talanta, 2017, 167, 651-657.	2.9	49
33	Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. ACS Nano, 2017, 11, 5367-5374.	7.3	159
34	Biomedical nanomotors: efficient glucose-mediated insulin release. Nanoscale, 2017, 9, 14307-14311.	2.8	49
35	Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level. Chemical Science, 2017, 8, 6750-6763.	3.7	104
36	Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Communications, 2017, 8, 272.	5.8	424

Berta Esteban Fernandez De

#	Article	IF	CITATIONS
37	Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano, 2016, 10, 4997-5005.	7.3	257
38	Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano, 2016, 10, 9536-9542.	7.3	211
39	Molybdenum Disulfideâ€Based Tubular Microengines: Toward Biomedical Applications. Advanced Functional Materials, 2016, 26, 6270-6278.	7.8	80
40	Aptamer-Modified Graphene-Based Catalytic Micromotors: Off–On Fluorescent Detection of Ricin. ACS Sensors, 2016, 1, 217-221.	4.0	121
41	Waterâ€Powered Cellâ€Mimicking Janus Micromotor. Advanced Functional Materials, 2015, 25, 7497-7501.	7.8	147
42	Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano, 2015, 9, 6756-6764.	7.3	267
43	Dual Functional Graphene Derivative-Based Electrochemical Platforms for Detection of the <i>TP53</i> Gene with Single Nucleotide Polymorphism Selectivity in Biological Samples. Analytical Chemistry, 2015, 87, 2290-2298.	3.2	76
44	RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale, 2015, 7, 13680-13686.	2.8	149
45	Lysozyme-Based Antibacterial Nanomotors. ACS Nano, 2015, 9, 9252-9259.	7.3	141
46	Lipoprotein(a) determination in human serum using a nitrilotriacetic acid derivative immunosensing scaffold on disposable electrodes. Analytical and Bioanalytical Chemistry, 2014, 406, 5379-5387.	1.9	5
47	Multiplexed Determination of Aminoâ€Terminal Proâ€Bâ€Type Natriuretic Peptide and Câ€Reactive Protein Cardiac Biomarkers in Human Serum at a Disposable Electrochemical Magnetoimmunosensor. Electroanalysis, 2014, 26, 254-261.	1.5	37
48	Ultrasensitive amperometric magnetoimmunosensor for human C-reactive protein quantification in serum. Sensors and Actuators B: Chemical, 2013, 188, 212-220.	4.0	68
49	Disposable amperometric magnetoimmunosensor for the sensitive detection of the cardiac biomarker amino-terminal pro-B-type natriuretic peptide in human serum. Analytica Chimica Acta, 2013, 784, 18-24.	2.6	34
50	Determinants of the Detection Limit and Specificity of Surface-Based Biosensors. Analytical Chemistry, 2013, 85, 6593-6597.	3.2	77
51	Design and fabrication of a <scp>COP</scp> â€based microfluidic chip: Chronoamperometric detection of <scp>T</scp> roponin <scp>T</scp> . Electrophoresis, 2012, 33, 3187-3194.	1.3	19
52	Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Analytical and Bioanalytical Chemistry, 2012, 403, 917-925.	1.9	66
53	Disposable amperometric magnetoimmunosensors for the specific detection of Streptococcus pneumoniae. Biosensors and Bioelectronics, 2010, 26, 1225-1230.	5.3	40