Martin Beck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935363/publications.pdf Version: 2024-02-01

		26610	33869
101	13,153	56	99
papers	citations	h-index	g-index
131 all docs	131 docs citations	131 times ranked	15968 citing authors

MADTIN RECK

#	Article	IF	CITATIONS
1	The quantitative proteome of a human cell line. Molecular Systems Biology, 2011, 7, 549.	3.2	691
2	In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 2020, 370, 203-208.	6.0	531
3	The nuclear pore complex: understanding its function through structural insight. Nature Reviews Molecular Cell Biology, 2017, 18, 73-89.	16.1	511
4	mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nature Methods, 2011, 8, 430-435.	9.0	481
5	Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography. Science, 2004, 306, 1387-1390.	6.0	451
6	Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics. Molecular and Cellular Proteomics, 2010, 9, 1634-1649.	2.5	407
7	Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature, 2009, 460, 762-765.	13.7	402
8	Identification of cross-linked peptides from large sequence databases. Nature Methods, 2008, 5, 315-318.	9.0	379
9	In situ structural analysis of the human nuclear pore complex. Nature, 2015, 526, 140-143.	13.7	361
10	Structural Probing of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry. Science, 2012, 337, 1348-1352.	6.0	357
11	Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature, 2007, 449, 611-615.	13.7	330
12	Integrated Structural Analysis of the Human Nuclear Pore Complex Scaffold. Cell, 2013, 155, 1233-1243.	13.5	321
13	Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 2016, 352, 363-365.	6.0	284
14	Systematic analysis of protein turnover in primary cells. Nature Communications, 2018, 9, 689.	5.8	280
15	Cell typeâ€specific nuclear pores: a case in point for contextâ€dependent stoichiometry of molecular machines. Molecular Systems Biology, 2013, 9, 648.	3.2	277
16	False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nature Methods, 2012, 9, 901-903.	9.0	273
17	Fourier ring correlation as a resolution criterion for super-resolution microscopy. Journal of Structural Biology, 2013, 183, 363-367.	1.3	269
18	Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of Cells in Atomic Detail?. Trends in Cell Biology, 2016, 26, 825-837.	3.6	261

#	Article	IF	CITATIONS
19	Cellular Disposal of miR23b by RAB27-Dependent Exosome Release Is Linked to Acquisition of Metastatic Properties. Cancer Research, 2014, 74, 5758-5771.	0.4	237
20	Structure and Assembly of the Nuclear Pore Complex. Annual Review of Biophysics, 2019, 48, 515-536.	4.5	205
21	Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell, 2018, 173, 1495-1507.e18.	13.5	183
22	Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell, 2021, 184, 1032-1046.e18.	13.5	179
23	Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats. Cell Systems, 2015, 1, 224-237.	2.9	176
24	Nuclear pores dilate and constrict in cellulo. Science, 2021, 374, eabd9776.	6.0	162
25	A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science, 2015, 349, 195-198.	6.0	159
26	Bioaccumulation of therapeutic drugs by human gut bacteria. Nature, 2021, 597, 533-538.	13.7	159
27	Xlink Analyzer: Software for analysis and visualization of cross-linking data in the context of three-dimensional structures. Journal of Structural Biology, 2015, 189, 177-183.	1.3	156
28	Organization of Actin Networks in Intact Filopodia. Current Biology, 2007, 17, 79-84.	1.8	151
29	Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. ELife, 2016, 5, .	2.8	143
30	Visual proteomics of the human pathogen Leptospira interrogans. Nature Methods, 2009, 6, 817-823.	9.0	142
31	In-cell architecture of the nuclear pore and snapshots of its turnover. Nature, 2020, 586, 796-800.	13.7	139
32	Al-based structure prediction empowers integrative structural analysis of human nuclear pores. Science, 2022, 376, .	6.0	136
33	Structure of the 26S proteasome from <i>Schizosaccharomyces pombe</i> at subnanometer resolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20992-20997.	3.3	130
34	Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains. Molecular Cell, 2016, 61, 125-137.	4.5	123
35	Proteasomes tether to two distinct sites at the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13726-13731.	3.3	123
36	Spatiotemporal variation of mammalian protein complex stoichiometries. Genome Biology, 2016, 17, 47.	3.8	115

#	Article	IF	CITATIONS
37	Luminal particles within cellular microtubules. Journal of Cell Biology, 2006, 174, 759-765.	2.3	111
38	Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science, 2021, 374, 717-723.	6.0	111
39	Capturing protein communities by structural proteomics in a thermophilic eukaryote. Molecular Systems Biology, 2017, 13, 936.	3.2	108
40	In situ architecture of the algal nuclear pore complex. Nature Communications, 2018, 9, 2361.	5.8	107
41	Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development. Cell, 2016, 166, 664-678.	13.5	101
42	Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits. Nature Structural and Molecular Biology, 2014, 21, 560-568.	3.6	100
43	An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. ELife, 2019, 8, .	2.8	92
44	Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Molecular Systems Biology, 2011, 7, 510.	3.2	91
45	Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism. Nature Structural and Molecular Biology, 2020, 27, 743-751.	3.6	90
46	Landscape of nuclear transport receptor cargoÂspecificity. Molecular Systems Biology, 2017, 13, 962.	3.2	88
47	Nuclear Pores Assemble from Nucleoporin Condensates During Oogenesis. Cell, 2019, 179, 671-686.e17.	13.5	87
48	Selective autophagy degrades nuclear pore complexes. Nature Cell Biology, 2020, 22, 159-166.	4.6	86
49	Comprehensive proteomics. Current Opinion in Biotechnology, 2011, 22, 3-8.	3.3	79
50	Facilitated aggregation of FG nucleoporins under molecular crowding conditions. EMBO Reports, 2013, 14, 178-183.	2.0	78
51	Architecture of the yeast Elongator complex. EMBO Reports, 2017, 18, 264-279.	2.0	75
52	Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings. Nature Structural and Molecular Biology, 2018, 25, 21-28.	3.6	75
53	Toward the atomic structure of the nuclear pore complex: when top down meets bottom up. Nature Structural and Molecular Biology, 2016, 23, 624-630.	3.6	74
54	Visual Proteomics. Methods in Enzymology, 2010, 483, 215-243.	0.4	68

#	Article	IF	CITATIONS
55	Towards understanding nuclear pore complex architecture and dynamics in the age of integrative structural analysis. Current Opinion in Cell Biology, 2015, 34, 31-38.	2.6	66
56	Spatial Tissue Proteomics Quantifies Inter- and Intratumor Heterogeneity in Hepatocellular Carcinoma (HCC). Molecular and Cellular Proteomics, 2018, 17, 810-825.	2.5	65
57	A modular platform for automated cryo-FIB workflows. ELife, 2021, 10, .	2.8	65
58	Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold. Journal of Cell Biology, 2015, 208, 283-297.	2.3	64
59	The Benefits of Cotranslational Assembly: A Structural Perspective. Trends in Cell Biology, 2019, 29, 791-803.	3.6	62
60	Structural insights into transcription initiation by yeast RNA polymerase I. EMBO Journal, 2017, 36, 2698-2709.	3.5	58
61	Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly. Nature Communications, 2015, 6, 7387.	5.8	57
62	Structure Determination of the Nuclear Pore Complex with Three-Dimensional Cryo electron Microscopy. Journal of Molecular Biology, 2016, 428, 2001-2010.	2.0	57
63	An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum. Nucleic Acids Research, 2014, 42, 13525-13533.	6.5	55
64	High-throughput subtomogram alignment and classification by Fourier space constrained fast volumetric matching. Journal of Structural Biology, 2012, 178, 152-164.	1.3	52
65	Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines. IScience, 2019, 21, 664-680.	1.9	52
66	Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nature Communications, 2015, 6, 6510.	5.8	51
67	A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation. Nucleic Acids Research, 2015, 43, 7600-7611.	6.5	51
68	The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR. Journal of Cell Biology, 2016, 215, 543-558.	2.3	51
69	Automated structure modeling of large protein assemblies using crosslinks as distance restraints. Nature Methods, 2016, 13, 515-520.	9.0	49
70	Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nature Communications, 2020, 11, 876.	5.8	49
71	Protein Interfaces of the Conserved Nup84 Complex from Chaetomium thermophilum Shown by Crosslinking Mass Spectrometry and Electron Microscopy. Structure, 2013, 21, 1672-1682.	1.6	48
72	Disentangling Genetic and Environmental Effects on the Proteotypes of Individuals. Cell, 2019, 177, 1308-1318.e10.	13.5	48

#	Article	IF	CITATIONS
73	Template-free detection of macromolecular complexes in cryo electron tomograms. Bioinformatics, 2011, 27, i69-i76.	1.8	37
74	Three-dimensional superresolution fluorescence microscopy maps the variable molecular architecture of the nuclear pore complex. Molecular Biology of the Cell, 2021, 32, 1523-1533.	0.9	37
75	Exploring the spatial and temporal organization of a cell's proteome. Journal of Structural Biology, 2011, 173, 483-496.	1.3	36
76	Characterization and quantification of proteins secreted by single human embryos prior to implantation. EMBO Molecular Medicine, 2015, 7, 1465-1479.	3.3	36
77	Proteome-Wide Structural Probing of Low-Abundant Protein Interactions by Cross-Linking Mass Spectrometry. Analytical Chemistry, 2020, 92, 4016-4022.	3.2	36
78	Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry. Nature Protocols, 2020, 15, 2956-2979.	5.5	35
79	A short linear motif in scaffold Nup145C connects Y-complex with pre-assembled outer ring Nup82 complex. Nature Communications, 2017, 8, 1107.	5.8	32
80	Prosurvival function of the cellular apoptosis susceptibility/importin-α1 transport cycle is repressed by p53 in liver cancer. Hepatology, 2014, 60, 884-895.	3.6	29
81	Nucleoporin Nup155 is part of the p53 network in liver cancer. Nature Communications, 2019, 10, 2147.	5.8	29
82	Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nature Communications, 2016, 7, 13248.	5.8	27
83	Alterations of the nuclear transport system in hepatocellular carcinoma – New basis for therapeutic strategies. Journal of Hepatology, 2017, 67, 1051-1061.	1.8	25
84	Co-translational assembly orchestrates competing biogenesis pathways. Nature Communications, 2022, 13, 1224.	5.8	25
85	Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs). Molecular and Cellular Proteomics, 2015, 14, 1350-1360.	2.5	23
86	The Use of Targeted Proteomics to Determine the Stoichiometry of Large Macromolecular Assemblies. Methods in Cell Biology, 2014, 122, 117-146.	0.5	22
87	From the resolution revolution to evolution: structural insights into the evolutionary relationships between vesicle coats and the nuclear pore. Current Opinion in Structural Biology, 2018, 52, 32-40.	2.6	21
88	Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22157-22166.	3.3	21
89	Structural biology in the fight against COVID-19. Nature Structural and Molecular Biology, 2021, 28, 2-7.	3.6	20
90	Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei. Scientific Reports, 2018, 8, 11249.	1.6	19

6

#	Article	IF	CITATIONS
91	Architecture and Molecular Mechanism of PAN, the Archaeal Proteasome Regulatory ATPase. Journal of Biological Chemistry, 2009, 284, 22952-22960.	1.6	14
92	Quantifying compartmentâ€associated variations ofÂprotein abundance in proteomics data. Molecular Systems Biology, 2018, 14, e8131.	3.2	14
93	The Combination of X-Ray Crystallography and Cryo-Electron Microscopy Provides Insight into the Overall Architecture of the Dodecameric Rvb1/Rvb2 Complex. PLoS ONE, 2016, 11, e0146457.	1.1	14
94	Structural and functional insights into nucleocytoplasmic transport. Histology and Histopathology, 2008, 23, 1025-33.	0.5	12
95	Toward understanding the structure of the vertebrate nuclear pore complex. Nucleus, 2014, 5, 119-123.	0.6	10
96	Coupling proteomics and metabolomics for the unsupervised identification of protein–metabolite interactions in Chaetomium thermophilum. PLoS ONE, 2021, 16, e0254429.	1.1	5
97	Exploring the Inner Space of Cells by Cryoelectron-Tomography. Microscopy and Microanalysis, 2004, 10, 152-153.	0.2	1
98	Kernporen-Transport maschinen in der Kernhülle und darüber hinaus. BioSpektrum, 2018, 24, 149-151.	0.0	0
99	Quality over quantity: Achieving Better Resolution in Subtomogram Averaging Using Less particles. Microscopy and Microanalysis, 2020, 26, 2514-2514.	0.2	0
100	Conserved exchange of paralog proteins during neuronal differentiation. Life Science Alliance, 2022, 5, e202201397.	1.3	0
101	Conformational dynamics of nuclear pores. FASEB Journal, 2022, 36, .	0.2	0