Xi Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5934776/publications.pdf

Version: 2024-02-01

377584 466096 1,287 67 21 32 citations h-index g-index papers 67 67 67 749 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effect of copper foam fin (CFF) shapes on thermal performance improvement of the latent heat storage units. Journal of Energy Storage, 2022, 45, 103520.	3.9	26
2	Influence of phase change material (PCM) parameters on the thermal performance of lightweight building walls with different thermal resistances. Case Studies in Thermal Engineering, 2022, 31, 101844.	2.8	29
3	An experimental comparison on regional thermal environment of the high-density enclosed building groups with retro-reflective and high-reflective coatings. Energy and Buildings, 2022, 259, 111864.	3.1	49
4	Comparative analysis between constant and variable solar radiation reflectivity for exterior walls in the hot-summer and cold-winter zone. International Journal of Low-Carbon Technologies, 2022, 17, 571-580.	1.2	1
5	A comprehensive review on the spray cooling system employed to improve the summer thermal environment: Application efficiency, impact factors, and performance improvement. Building and Environment, 2022, 217, 109065.	3.0	59
6	A new method to improve indoor environment: Combining the living wall with air-conditioning. Building and Environment, 2022, 216, 108981.	3.0	44
7	A review on indoor green plants employed to improve indoor environment. Journal of Building Engineering, 2022, 53, 104542.	1.6	22
8	Correlation Analysis of Thermal Comfort and Landscape Characteristics: A Case Study of the Coastal Greenway in Qingdao, China. Buildings, 2022, 12, 541.	1.4	3
9	Energy-saving contribution of the thermochromic coating in exterior walls in hot-summer and cold-winter zone. International Journal of Low-Carbon Technologies, 2022, 17, 710-719.	1.2	2
10	Typical effects of occupants' behaviour on indoor air-conditioned environments in the hot summer and cold winter region of China. Indoor and Built Environment, 2021, 30, 606-620.	1.5	9
11	When artificial intelligence meets building energy efficiency, a review focusing on zero energy building. Artificial Intelligence Review, 2021, 54, 2193-2220.	9.7	31
12	Influence of the Copper Foam Fin (CFF) shapes on thermal performance of Phase-Change Material (PCM) in an enclosed cavity. Case Studies in Thermal Engineering, 2021, 23, 100810.	2.8	35
13	Influence of the copper foam shape on thermal performance of phase-change material. Journal of Energy Storage, 2021, 36, 102416.	3.9	23
14	Inclination angles on the thermal behavior of Phase-Change Material (PCM) in a cavity filled with copper foam partly. Case Studies in Thermal Engineering, 2021, 25, 100944.	2.8	17
15	Outdoor comfort level improvement in the traffic waiting areas by using a mist spray system: An experiment and questionnaire study. Sustainable Cities and Society, 2021, 71, 102973.	5.1	19
16	Effect of the filling position and filling rate of the insulation material on the insulation performance of the hollow block. Case Studies in Thermal Engineering, 2021, 26, 101023.	2.8	12
17	Application of retro-reflective materials in urban buildings: A comprehensive review. Energy and Buildings, 2021, 247, 111137.	3.1	51
18	Impact of Occupant Behavior on Thermal Performance of the Typical-Composite Walls of a Building. Journal of Energy Engineering - ASCE, 2021, 147, 04021039.	1.0	4

#	Article	IF	CITATIONS
19	Influence of wall thermal performance on the contribution efficiency of the Phase-Change Material (PCM) layer. Case Studies in Thermal Engineering, 2021, 28, 101398.	2.8	18
20	Composite design and thermal comfort evaluation of safety helmet with phase change materials cooling. Thermal Science, 2021, 25, 891-900.	0.5	7
21	A numerical study on the effect of phase-change material (PCM) parameters on the thermal performance of lightweight building walls. Case Studies in Construction Materials, 2021, 15, e00758.	0.8	8
22	Location combination optimization of thermal insulation material and phase-change material in multi-layer walls under air-conditioning continuous and intermittent operation. Journal of Energy Storage, 2021, 44, 103449.	3.9	10
23	Composition of cooling load formed by non-transparent envelopes of a common office building under air-conditioning intermittent operation. Journal of Building Physics, 2020, 43, 528-544.	1.2	6
24	Filling copper foam partly on thermal behavior of phase-change material in a rectangular enclosure. Journal of Energy Storage, 2020, 32, 101867.	3.9	23
25	Effect of porosity and pore density of copper foam on thermal performance of the paraffin-copper foam composite Phase-Change Material. Case Studies in Thermal Engineering, 2020, 22, 100742.	2.8	42
26	Thermal performance analysis of sensible and latent heat thermal energy storage tanks: A contrastive experiment. Journal of Building Engineering, 2020, 32, 101713.	1.6	15
27	Model experiment study for ventilation performance improvement of the Wind Energy Fan system by optimizing wind turbines. Sustainable Cities and Society, 2020, 60, 102212.	5.1	4
28	Thermal behavior analysis of hollow bricks filled with phase-change material (PCM). Journal of Building Engineering, 2020, 31, 101447.	1.6	49
29	Optimization on non-transparent envelopes of the typical office rooms with air-conditioning under intermittent operation. Solar Energy, 2020, 201, 798-809.	2.9	16
30	Effect of inner decoration coating on inner surface temperatures and heat flows under air-conditioning intermittent operation. Case Studies in Thermal Engineering, 2019, 14, 100503.	2.8	4
31	Parametric analysis on the temperature response rules in inner surfaces for the homogeneity walls. Case Studies in Thermal Engineering, 2019, 13, 100353.	2.8	3
32	A study on model experiment and aerodynamic match of Wind Energy Fan (WEF). Sustainable Cities and Society, 2019, 49, 101618.	5.1	3
33	Hydrothermal pretreatment of rice straw at relatively lower temperature to improve biogas production via anaerobic digestion. Chinese Chemical Letters, 2019, 30, 1219-1223.	4.8	52
34	Thermal performance optimization of building floors under air-conditioning intermittent operation by numerical simulation. Journal of Building Physics, 2019, 43, 99-120.	1.2	13
35	Questionnaire survey on the summer air-conditioning use behaviour of occupants in residences and office buildings of China. Indoor and Built Environment, 2019, 28, 711-724.	1.5	7
36	Heat storage and release characteristics of composite phase change wall under different intermittent heating conditions. Science and Technology for the Built Environment, 2019, 25, 336-345.	0.8	18

#	Article	IF	CITATIONS
37	Experimental study on thermal performance improvement of building envelopes by integrating with phase change material in an intermittently heated room. Sustainable Cities and Society, 2018, 38, 607-615.	5.1	39
38	Effect of the insulation materials filling on the thermal performance of sintered hollow bricks. Case Studies in Thermal Engineering, 2018, 11, 62-70.	2.8	46
39	Effect of the insulation materials filling on the thermal performance of sintered hollow bricks under the air-conditioning intermittent operation. Case Studies in Construction Materials, 2018, 8, 217-225.	0.8	19
40	Comparative analysis on thermal performance of different wall insulation forms under the air-conditioning intermittent operation in summer. Applied Thermal Engineering, 2018, 130, 429-438.	3.0	43
41	Research on urban park design combined with the urban ventilation system. Energy Procedia, 2018, 152, 1133-1138.	1.8	7
42	Numerical optimization on thermal performance characteristics of interior walls based on air-conditioning intermittent running. Case Studies in Thermal Engineering, 2018, 12, 608-619.	2.8	11
43	Optimization of the wall thermal insulation characteristics based on the intermittent heating operation. Case Studies in Construction Materials, 2018, 9, e00188.	0.8	18
44	Effect of retro-reflective materials on temperature environment in tents. Case Studies in Thermal Engineering, 2017, 9, 122-127.	2.8	19
45	Effect of the thermal insulation layer location on wall dynamic thermal response rate under the air-conditioning intermittent operation. Case Studies in Thermal Engineering, 2017, 10, 79-85.	2.8	27
46	A new simple method to measure wall thermal transmittance in situ and its adaptability analysis. Applied Thermal Engineering, 2017, 122, 747-757.	3.0	49
47	Research on thermal performance improvement of lightweight buildings by integrating with phase change material under different climate conditions. Science and Technology for the Built Environment, 2017, 23, 285-295.	0.8	9
48	Numerical simulation of outdoor wind environment of typical traditional village in the northeastern Sichuan Basin. Procedia Engineering, 2017, 205, 923-929.	1.2	4
49	Qualitative analysis of the cooling load in the typical room under continuous and intermittent runnings of air-conditioning. Procedia Engineering, 2017, 205, 405-409.	1.2	12
50	Qualitative Experimental research on thermal response of interior finishing material under air-conditioning intermittent running. Procedia Engineering, 2017, 205, 410-414.	1.2	3
51	Field Research on The Summer Thermal Environment of Traditional Folk Tibetan-style Houses in Northwest Sichuan Plateau. Procedia Engineering, 2017, 205, 438-445.	1.2	5
52	The Testing Research on Prefabricated Building Indoor Thermal Environment of Earthquake Disaster Region. Procedia Engineering, 2017, 205, 453-460.	1.2	3
53	Effect of retro-reflective materials on building indoor temperature conditions and heat flow analysis for walls. Energy and Buildings, 2016, 127, 488-498.	3.1	22
54	EFFECT OF PERIODICALLY ALTERNATING WALL TEMPERATURE ON NATURAL CONVECTION HEAT TRANSFER ENHANCEMENT IN A SQUARE CAVITY FILLED WITH Cu-WATER NANOFLUIDS. Heat Transfer Research, 2016, 47, 839-854.	0.9	1

#	Article	IF	Citations
55	Research on Indoor Thermal Environment Improvement of Lightweight Building Integrated with Phase Change Material under Different Climate Conditions. Procedia Engineering, 2015, 121, 1628-1634.	1.2	12
56	Thermal Performance Improvement of Prefab Houses by Covering Retro-reflective Materials. Procedia Engineering, 2015, 121, 1001-1007.	1.2	11
57	Comparative Study of In-situ Test and Laboratory Test on Material Reflectivity. Procedia Engineering, 2015, 121, 1932-1938.	1.2	0
58	Survey Research on Living Environment and Energy Consumption in the West Rural Areas of China. Procedia Engineering, 2015, 121, 1044-1050.	1.2	9
59	Optimum Analysis on the Thermal Performance of the Small-sized Biogas Fermentation Tank Based on Annual Energy Consumption Simulation. Procedia Engineering, 2015, 121, 309-316.	1.2	1
60	Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method. Energy and Buildings, 2015, 86, 754-765.	3.1	95
61	Buoyancy-driven convection heat transfer of copper–water nanofluid in a square enclosure under the different periodic oscillating boundary temperature waves. Case Studies in Thermal Engineering, 2015, 6, 93-103.	2.8	6
62	Feasibility experiment on the simple hot box-heat flow meter method and the optimization based on simulation reproduction. Applied Thermal Engineering, 2015, 83, 48-56.	3.0	48
63	Dynamic thermal reaction analysis of wall structures in various cooling operation conditions. Energy Conversion and Management, 2015, 105, 872-879.	4.4	9
64	Influence of user behavior on unsatisfactory indoor thermal environment. Energy Conversion and Management, 2014, 86, 1-7.	4.4	18
65	Angle Factor Calculation for the Thermal Radiation Environment of the Human Body. Lecture Notes in Electrical Engineering, 2014, , 447-455.	0.3	7
66	Optimization Research on the Multilayer Wall Integrated with a PCM Layer. Open Construction and Building Technology Journal, 2014, 8, 406-412.	0.3	0
67	Natural Convection Heat Transfer of Copper-Water Nanofluid in an Inclined Square Cavity with Time-Periodic Boundary Conditions. , 0, , .		0