Duho Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5934167/publications.pdf

Version: 2024-02-01

44 papers

1,425 citations

394421 19 h-index 330143 37 g-index

44 all docs

44 docs citations

44 times ranked 1857 citing authors

#	Article	IF	CITATIONS
1	Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material. Scientific Reports, 2017, 7, 39669.	3.3	225
2	Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries. Nature Communications, 2019, 10, 5203.	12.8	202
3	The origins and mechanism of phase transformation in bulk Li ₂ MnO ₃ : first-principles calculations and experimental studies. Journal of Materials Chemistry A, 2015, 3, 7066-7076.	10.3	91
4	Reversible Anionic Redox Activities in Conventional LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes. Angewandte Chemie - International Edition, 2020, 59, 8681-8688.	13.8	91
5	Rational Design of Na(Li _{1/3} Mn _{2/3})O ₂ Operated by Anionic Redox Reactions for Advanced Sodiumâ€lon Batteries. Advanced Materials, 2017, 29, 1701788.	21.0	78
6	Anti-fluorite Li ₆ CoO ₄ as an alternative lithium source for lithium ion capacitors: an experimental and first principles study. Journal of Materials Chemistry A, 2015, 3, 12377-12385.	10.3	72
7	Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries. Energy and Environmental Science, 2019, 12, 1326-1333.	30.8	58
8	Design of Nickel-rich Layered Oxides Using $\langle i \rangle d \langle i \rangle$ Electronic Donor for Redox Reactions. Chemistry of Materials, 2015, 27, 6450-6456.	6.7	52
9	Critical Role of Titanium in O3-Type Layered Cathode Materials for Sodium-Ion Batteries. ACS Applied Materials & Company: Interfaces, 2019, 11, 30894-30901.	8.0	50
10	Mechanism of Oxygen Vacancy on Impeded Phase Transformation and Electrochemical Activation in Inactive Li ₂ MnO ₃ . ChemElectroChem, 2016, 3, 943-949.	3.4	44
11	Structural and Thermodynamic Understandings in Mnâ€Based Sodium Layered Oxides during Anionic Redox. Advanced Science, 2020, 7, 2001263.	11.2	38
12	Design of Surface Doping for Mitigating Transition Metal Dissolution in LiNi _{0.5} Mn _{1.5} O ₄ Nanoparticles. ChemSusChem, 2016, 9, 2967-2973.	6.8	35
13	Understanding of Surface Redox Behaviors of Li ₂ MnO ₃ in Liâ€ion Batteries: Firstâ€Principles Prediction and Experimental Validation. ChemSusChem, 2015, 8, 3255-3262.	6.8	31
14	Anionic Redox Reactions in Manganese-Based Binary Layered Oxides for Advanced Sodium-Ion Batteries. Chemistry of Materials, 2020, 32, 5541-5549.	6.7	30
15	Phase Separation and d Electronic Orbitals on Cyclic Degradation in Li–Mn–O Compounds: First-Principles Multiscale Modeling and Experimental Observations. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16631-16639.	8.0	22
16	Underlying mechanisms of the synergistic role of Li ₂ MnO ₃ and LiNi _{$1/3$} Co _{$1/3$} Mn _{$1/3$} O ₂ in high-Mn, Li-rich oxides. Physical Chemistry Chemical Physics, 2016, 18, 11411-11421.	2.8	22
17	Anionic Redox Reactions in Cathodes for Sodiumâ€lon Batteries. ChemElectroChem, 2021, 8, 625-643.	3.4	22
18	Thermodynamics and Na kinetics in P2-type oxygen redox Mn-Ni binary layered oxides manipulated via Li substitution. Energy Storage Materials, 2021, 42, 97-108.	18.0	22

#	Article	IF	CITATIONS
19	Hexacyanometallates for sodium-ion batteries: insights into higher redox potentials using d electronic spin configurations. Physical Chemistry Chemical Physics, 2017, 19, 10443-10452.	2.8	20
20	Rational design of Na(Li _{1/3} Mn _{1/2} Cr _{1/6})O ₂ exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18036-18043.	10.3	19
21	Enabling Stable and Nonhysteretic Oxygen Redox Capacity in Liâ€Excess Na Layered Oxides. Advanced Energy Materials, 2022, 12, .	19.5	18
22	Fundamental interplay between phase-transition kinetics and thermodynamics of manganese-based sodium layered oxides during cationic and anionic redox. Journal of Materials Chemistry A, 2020, 8, 21142-21150.	10.3	15
23	Reversible Anionic Redox Activities in Conventional LiNi _{1/3} Co _{1/3} Codes. Angewandte Chemie, 2020, 132, 8759-8766.	2.0	15
24	Chemomechanical Design Factors for High Performance in Manganese-Based Spinel Cathode Materials for Advanced Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22789-22797.	8.0	15
25	Unlocking the Intrinsic Origin of the Reversible Oxygen Redox Reaction in Sodiumâ€Based Layered Oxides. ChemElectroChem, 2021, 8, 1464-1472.	3.4	14
26	Importance of metal <mml:math altimg="si4.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>â^'</mml:mo></mml:math> oxygen bond for stable oxygen-redox reaction in Li-excess layered oxides. Energy Storage Materials, 2021, 42, 764-772.	18.0	13
27	Cathodes: Rational Design of Na(Li _{1/3} Mn _{2/3})O ₂ Operated by Anionic Redox Reactions for Advanced Sodiumâ€ion Batteries (Adv. Mater. 33/2017). Advanced Materials, 2017, 29, .	21.0	12
28	Rational design of Ti-based oxygen redox layered oxides for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2021 , 9 , 11762 - 11770 .	10.3	11
29	Unlocking veiled oxygen redox in Na-based earth-abundant binary layered oxide. Journal of Materials Chemistry A, 2021, 9, 15179-15187.	10.3	10
30	Uncovering the Structural Evolution in Na-Excess Layered Cathodes for Rational Use of an Anionic Redox Reaction. ACS Applied Materials & Interfaces, 2020, 12, 29203-29211.	8.0	9
31	Understanding Voltage Hysteresis for High-Energy-Density Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 5219-5226.	5.1	9
32	Unlocking the origin of triggering hysteretic oxygen capacity in divalent species incorporated O-type sodium layered-oxide cathodes. Energy Storage Materials, 2022, 45, 432-441.	18.0	7
33	Physicochemical Design Principles Enabling High-Energy and -Power Low-Cost Na Storage Materials. Journal of Physical Chemistry C, 2021, 125, 3305-3313.	3.1	6
34	Origin of reversible oxygen redox reactions in high energy density layered oxides. Cell Reports Physical Science, 2021, 2, 100508.	5.6	6
35	Chemomechanics in Ni–Mn binary cathode for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 24290-24298.	10.3	6
36	Physicochemical Screen Effect of Li Ions in Oxygen Redox Cathodes for Advanced Sodium-Ion Batteries. Chemistry of Materials, 2022, 34, 5971-5979.	6.7	6

#	Article	IF	CITATIONS
37	Extending nonhysteretic oxygen capacity in P2-type Ni-Mn binary Na oxides. Chemical Engineering Journal, 2022, 446, 137429.	12.7	6
38	Intrinsic Origin of Nonhysteretic Oxygen Capacity in Conventional Na-Excess Layered Oxides. ACS Applied Materials & Diterfaces, 2021, 13, 46620-46626.	8.0	5
39	Unraveling divalent pillar effects for the prolonged cycling of high-energy-density cathodes. Journal of Materials Chemistry A, 2021, 9, 26820-26828.	10.3	5
40	Importance of Chemical Distortion on the Hysteretic Oxygen Capacity in Li-Excess Layered Oxides. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9057-9065.	8.0	5
41	Unified Picture of (Non)Hysteretic Oxygen Capacity in O3‶ype Sodium 3 <i>d</i> Layered Oxides. Advanced Energy Materials, 2022, 12, .	19.5	5
42	Theoretical understanding of oxygen stability in Mn–Fe binary layered oxides for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 11101-11109.	10.3	2
43	Determining Factors in Triggering Hysteretic Oxygen Capacities in Lithium-Excess Sodium Layered Oxides. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19515-19523.	8.0	1

Enabling Stable and Nonhysteretic Oxygen Redox Capacity in Liâ€Excess Na Layered Oxides (Adv. Energy) Tj ETQq010.0 rgBT (Overlock 1