Kai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/593406/publications.pdf Version: 2024-02-01

		623188	752256
20	1,171	14	20
papers	citations	h-index	g-index
21	21	21	2155
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The effect of thick fibers and large pores of electrospun poly(Îμ-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials, 2014, 35, 5700-5710.	5.7	361
2	Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials, 2017, 141, 74-85.	5.7	189
3	A comprehensive library of human transcription factors for cell fate engineering. Nature Biotechnology, 2021, 39, 510-519.	9.4	110
4	A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes. Science Translational Medicine, 2021, 13, .	5.8	68
5	Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Science Advances, 2020, 6, eaba7606.	4.7	62
6	Overcoming foreign-body reaction through nanotopography: Biocompatibility and immunoisolation properties of a nanofibrous membrane. Biomaterials, 2016, 102, 249-258.	5.7	57
7	A bilaminated decellularized scaffold for islet transplantation: Structure, properties and functions in diabetic mice. Biomaterials, 2017, 138, 80-90.	5.7	46
8	Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cellular and Molecular Life Sciences, 2019, 76, 421-439.	2.4	43
9	From Micro to Macro: The Hierarchical Design in a Micropatterned Scaffold for Cell Assembling and Transplantation. Advanced Materials, 2017, 29, 1604600.	11.1	41
10	The paracrine effects of adipose-derived stem cells on neovascularization and biocompatibility of a macroencapsulation device. Acta Biomaterialia, 2015, 15, 65-76.	4.1	39
11	A Zwitterionic Polyurethane Nanoporous Device with Low Foreignâ€Body Response for Islet Encapsulation. Advanced Materials, 2021, 33, e2102852.	11.1	29
12	Local Immunomodulatory Strategies to Prevent Alloâ€Rejection in Transplantation of Insulinâ€Producing Cells. Advanced Science, 2021, 8, e2003708.	5.6	25
13	Defined Surface Immobilization of Glycosaminoglycan Molecules for Probing and Modulation of Cell–Material Interactions. Biomacromolecules, 2013, 14, 2373-2382.	2.6	23
14	Polymerization of Hydrogel Network on Microfiber Surface: Synthesis of Hybrid Water-Absorbing Matrices for Biomedical Applications. ACS Biomaterials Science and Engineering, 2016, 2, 887-892.	2.6	18
15	A Safe, Fibrosisâ€Mitigating, and Scalable Encapsulation Device Supports Longâ€Term Function of Insulinâ€Producing Cells. Small, 2022, 18, e2104899.	5.2	17
16	Bioengineering hemophilia A–specific microvascular grafts for delivery of full-length factor VIII into the bloodstream. Blood Advances, 2019, 3, 4166-4176.	2.5	15
17	Scaffold-supported Transplantation of Islets in the Epididymal Fat Pad of Diabetic Mice. Journal of Visualized Experiments, 2017, , .	0.2	10
18	Human endothelial colony-forming cells provide trophic support for pluripotent stem cell-derived cardiomyocytes via distinctively high expression of neuregulin-1. Angiogenesis, 2021, 24, 327-344.	3.7	10

#	Article	IF	CITATIONS
19	Non-Viral Gene Delivery Systems for Treatment of Myocardial Infarction: Targeting Strategies and Cardiac Cell Modulation. Pharmaceutics, 2021, 13, 1520.	2.0	4
20	Investigating design principles of micropatterned encapsulation systems containing high-density microtissue arrays. Science China Life Sciences, 2014, 57, 221-231.	2.3	3