Meicheng Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5933874/publications.pdf

Version: 2024-02-01

48 papers

4,093 citations

32 h-index 223800 46 g-index

49 all docs 49 docs citations

49 times ranked 5308 citing authors

#	Article	IF	CITATIONS
1	New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions. Journal of Catalysis, 2022, 406, 39-47.	6.2	29
2	Complete mineralization of phenolic compounds in visible-light-driven photocatalytic ozonation with single-crystal WO3 nanosheets: Performance and mechanism investigation. Journal of Hazardous Materials, 2022, 433, 128811.	12.4	18
3	Enhanced catalytic elimination of typical VOCs over ZnCoOx catalyst derived from in situ pyrolysis of ZnCo bimetallic zeolitic imidazolate frameworks. Applied Catalysis B: Environmental, 2022, 308, 121212.	20.2	47
4	Preferential removal of aromatics-dominated electronic industrial emissions using the integration of spray tower and photocatalysis technologies. Journal of Cleaner Production, 2022, 364, 132706.	9.3	6
5	Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Applied Catalysis B: Environmental, 2021, 281, 119447.	20.2	467
6	Manipulation of plasmon-induced hot electron transport in Pd/MoO3-x@ZIF-8: Boosting the activity of Pd-catalyzed nitroaromatic hydrogenation under visible-light irradiation. Applied Catalysis B: Environmental, 2021, 282, 119511.	20.2	29
7	Synthesis of Plasmonic Catalyst with Core-Shell Structure for Visible Light Enhanced Catalytic Performance. Nanostructure Science and Technology, 2021, , 233-243.	0.1	О
8	Atomically dispersed Pd sites on Ti-SBA-15 for efficient catalytic combustion of typical gaseous VOCs. Environmental Science: Nano, 2021, 8, 3735-3745.	4.3	11
9	Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst. Journal of CO2 Utilization, 2021, 54, 101765.	6.8	27
10	Advances in Catalytic Oxidation of Volatile Organic Compounds over Pd-Supported Catalysts: Recent Trends and Challenges. Frontiers in Materials, 2020, 7, .	2.4	36
11	Photocatalytic degradation mechanism of gaseous styrene over Au/TiO2@CNTs: Relevance of superficial state with deactivation mechanism. Applied Catalysis B: Environmental, 2020, 272, 118969.	20.2	84
12	<i>In situ</i> growth of well-aligned Ni-MOF nanosheets on nickel foam for enhanced photocatalytic degradation of typical volatile organic compounds. Nanoscale, 2020, 12, 9462-9470.	5 . 6	66
13	In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane. Chinese Journal of Catalysis, 2020, 41, 1603-1612.	14.0	78
14	PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production. Scientific Reports, 2019, 9, 15675.	3.3	43
15	Photocatalytic ozonation mechanism of gaseous <i>n</i> -hexane on MO _x –TiO ₂ –foam nickel composite (M = Cu, Mn, Ag): unveiling the role of ˙OH and Ë™O ₂ ^{â~'} . Environmental Science: Nano, 2019, 6, 959-969.	4.3	46
16	Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO2-assisted synthesized mesoporous carbon confined mixed-phase TiO2 nanocomposites derived from MOFs. Applied Catalysis B: Environmental, 2019, 250, 337-346.	20.2	113
17	Metal–organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges. Environmental Science: Nano, 2019, 6, 1006-1025.	4.3	245
18	The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO2 ordered porous catalysts under simulated solar irradiation. Journal of Catalysis, 2019, 370, 88-96.	6.2	69

#	Article	IF	CITATIONS
19	Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature. Applied Surface Science, 2018, 442, 195-203.	6.1	21
20	Design of Singleâ€Site Photocatalysts by Using Metal–Organic Frameworks as a Matrix. Chemistry - an Asian Journal, 2018, 13, 1767-1779.	3.3	49
21	Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chemical Society Reviews, 2018, 47, 8072-8096.	38.1	176
22	High-surface-area plasmonic MoO _{3â^'x} : rational synthesis and enhanced ammonia borane dehydrogenation activity. Journal of Materials Chemistry A, 2017, 5, 8946-8953.	10.3	94
23	Palladium Nanoparticles Supported on Titaniumâ€Doped Graphitic Carbon Nitride for Formic Acid Dehydrogenation. Chemistry - an Asian Journal, 2017, 12, 860-867.	3.3	57
24	Mesoporous single-crystal-like TiO2 mesocages threaded with carbon nanotubes for high-performance electrochemical energy storage. Nano Energy, 2017, 35, 44-51.	16.0	75
25	Localized Surface Plasmon Resonances in Plasmonic Molybdenum Tungsten Oxide Hybrid for Visible-Light-Enhanced Catalytic Reaction. Journal of Physical Chemistry C, 2017, 121, 23531-23540.	3.1	72
26	Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Applied Catalysis B: Environmental, 2017, 218, 555-569.	20.2	173
27	Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2â^'xS nanowires decorated by Pd nanoparticles. Nano Energy, 2017, 31, 57-63.	16.0	65
28	Plasmonic Au@Pd Nanoparticles Supported on a Basic Metal–Organic Framework: Synergic Boosting of H ₂ Production from Formic Acid. ACS Energy Letters, 2017, 2, 1-7.	17.4	180
29	Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances. Journal of the American Chemical Society, 2016, 138, 9316-9324.	13.7	201
30	Nanometal-Loaded Metal-Organic-Framework Photocatalysts. Nanostructure Science and Technology, 2016, , 507-522.	0.1	0
31	Non-Noble-Metal Nanoparticle Supported on Metal–Organic Framework as an Efficient and Durable Catalyst for Promoting H ₂ Production from Ammonia Borane under Visible Light Irradiation. ACS Applied Materials & Description (1988) and State (1988) and	8.0	88
32	Roomâ€Temperature and Aqueousâ€Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visibleâ€Lightâ€Enhanced Hydrogen Generation. Chemistry - an Asian Journal, 2016, 11, 2377-2381.	3.3	33
33	Enhancement of Catalytic Activity Over AuPd Nanoparticles Loaded Metal Organic Framework Under Visible Light Irradiation. Topics in Catalysis, 2016, 59, 1765-1771.	2.8	22
34	Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H ₂ production. Nanoscale, 2016, 8, 7749-7754.	5.6	32
35	Size Effect of Carbon-Supported Pd Nanoparticles in the Hydrogen Production from Formic Acid. Bulletin of the Chemical Society of Japan, 2015, 88, 1500-1502.	3.2	26
36	Visibleâ€Lightâ€Responsive Carbon Dioxide Reduction System: Rhenium Complex Intercalated into a Zirconium Phosphate Layered Matrix. ChemCatChem, 2015, 7, 3519-3525.	3.7	26

3

#	Article	IF	CITATIONS
37	In situ synthesis of Ti3+ self-doped mesoporous TiO2 as a durable photocatalyst for environmental remediation. Chinese Journal of Catalysis, 2015, 36, 2095-2102.	14.0	44
38	Uniform anatase single-crystal cubes with high thermal stability fully enclosed by active $\{010\}$ and $\{001\}$ facets. RSC Advances, 2015 , 5 , 11029 - 11035 .	3.6	12
39	Synthesis of Ce ions doped metal–organic framework for promoting catalytic H ₂ production from ammonia borane under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 14134-14141.	10.3	102
40	Synthesis of highly visible light active TiO ₂ -2-naphthol surface complex and its application in photocatalytic chromium(<scp>vi</scp>) reduction. RSC Advances, 2015, 5, 39752-39759.	3.6	49
41	Hierarchical Nanostructured WO ₃ with Biomimetic Proton Channels and Mixed Ionic-Electronic Conductivity for Electrochemical Energy Storage. Nano Letters, 2015, 15, 6802-6808.	9.1	157
42	Enhancement of Pd-catalyzed Suzuki–Miyaura coupling reaction assisted by localized surface plasmon resonance of Au nanorods. Catalysis Today, 2015, 242, 381-385.	4.4	53
43	Amine-functionalized MIL-101(Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water. Chemical Communications, 2014, 50, 11645-11648.	4.1	199
44	Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation. Applied Catalysis B: Environmental, 2014, 147, 610-616.	20.2	119
45	Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes. Journal of the American Chemical Society, 2012, 134, 14283-14286.	13.7	366
46	Microwave-Induced Synthesis of Porous Single-Crystal-Like TiO ₂ with Excellent Lithium Storage Properties. Langmuir, 2012, 28, 4543-4547.	3.5	52
47	Microwave-assisted architectural control fabrication of 3D CdS structures. Journal of Sol-Gel Science and Technology, 2012, 62, 140-148.	2.4	10
48	Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment. Journal of Hazardous Materials, 2012, 211-212, 104-111.	12.4	126