

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5933307/publications.pdf Version: 2024-02-01

7111E X11

#	Article	IF	CITATIONS
1	Development of MnO ₂ /porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 2555-2562.	5.2	292
2	A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17107-17114.	5.2	180
3	Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 8407-8415.	5.2	161
4	Structure evolutions and high electrochemical performances of carbon aerogels prepared from the pyrolysis of phenolic resin gels containing ZnCl 2. Electrochimica Acta, 2017, 231, 601-608.	2.6	36
5	High surface area ordered mesoporous carbon for high-level removal of rhodamine B. Journal of Materials Science, 2013, 48, 8003-8013.	1.7	31
6	Synthesis of Alumina Aerogels by Ambient Drying Method and Control of Their Structures. Journal of Porous Materials, 2005, 12, 317-321.	1.3	26
7	Graphitization of aerogel-like carbons in molten sodium metal. Carbon, 2011, 49, 3385-3387.	5.4	26
8	Electrochemical synthesis and performance of PANI electrode material for electrochemical capacitor. Ionics, 2013, 19, 1405-1413.	1.2	21
9	One-pot assembly of silica@two polymeric shells for synthesis of hollow carbon porous nanospheres: Adsorption of bisphenol A. Materials Letters, 2014, 120, 108-110.	1.3	20
10	Preparation and characterization of silica-titania aerogel-like balls by ambient pressure drying. Journal of Sol-Gel Science and Technology, 2007, 41, 203-207.	1.1	19
11	Facile synthesis and characterization of high-performance NiMoO4·ÂxH2O nanorods electrode material for supercapacitors. Ionics, 2015, 21, 2797-2804.	1.2	19
12	Self-Assembly of CdTe Nanocrystals into Two-Dimensional Nanoarchitectures at the Airâ^'Liquid Interface Induced by Gemini Surfactant of 1,3-Bis(hexadecyldimethylammonium) Propane Dibromide. Journal of Physical Chemistry C, 2008, 112, 6689-6694.	1.5	14
13	Facile synthesis of mesoporous cobalt oxide rugby balls for electrochemical energy storage. New Journal of Chemistry, 2015, 39, 68-71.	1.4	12
14	The structural optimization and high electrochemical behavior of porous carbons by graphitization in molten sodium metals. Electrochimica Acta, 2014, 117, 486-491.	2.6	8
15	Multilayer graphene <i>in situ</i> formed in carbonized waste paper with the synergism of nickel and sodium. New Journal of Chemistry, 2021, 45, 6254-6262.	1.4	6
16	In situ constructed multilayer graphene structure enabling improved supercapacitive charge storage. Electrochimica Acta, 2022, 426, 140827.	2.6	4
17	High Electrochemical Performances Resulted from the Metamorphic Differentiation of Amorphous Carbons. Journal of the Electrochemical Society, 2015, 162, H686-H692.	1.3	3
18	Graphitized carbon from wastepaper as electrodes for high-performance electric double-layer capacitors. Journal of Solid State Electrochemistry, 2014, 18, 2481-2486.	1.2	2

#	Article	IF	CITATIONS
19	Improved Capacitive Performances from Adjusted Graphite Microcrystallites with Multilayer Graphene Being In Situ Formed in Amorphous Carbons. Energy Technology, 2020, 8, 1901500.	1.8	2

20 Interaction between (1,1′â€Binaphthalene)â€2,2′â€diol and Lecithin Liposome. Chinese Journal of Chemistry. 1 2010, 28, 193-198.