
Nina Graupner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/593305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A: Applied Science and Manufacturing, 2009, 40, 810-821.	3.8	490
2	Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. Journal of Materials Science, 2008, 43, 5222-5229.	1.7	157
3	Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: A critical review of pull-out test, microbond test and single fibre fragmentation test results. Composites Part A: Applied Science and Manufacturing, 2014, 63, 133-148.	3.8	129
4	A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 2010-2019.	3.8	120
5	Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites. Composite Structures, 2018, 188, 394-406.	3.1	77
6	Impregnated fibre bundle test for natural fibres used in composites. Journal of Reinforced Plastics and Composites, 2017, 36, 942-957.	1.6	68
7	Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: Influence of fibre loading, fibre length, fibre orientation and voids. Composites Part A: Applied Science and Manufacturing, 2016, 81, 158-171.	3.8	66
8	Improvement and analysis of fibre/matrix adhesion of regenerated cellulose fibre reinforced PP-, MAPP- and PLA-composites by the use of Eucalyptus globulus lignin. Composites Part B: Engineering, 2014, 66, 117-125.	5.9	54
9	Improvement of the Mechanical Properties of Biodegradable Hemp Fiber Reinforced Poly(lactic acid) (PLA) Composites by the Admixture of Man-made Cellulose Fibers. Journal of Composite Materials, 2009, 43, 689-702.	1.2	47
10	Influence of reprocessing on fibre length distribution, tensile strength and impact strength of injection moulded cellulose fibre-reinforced polylactide (PLA) composites. EXPRESS Polymer Letters, 2016, 10, 647-663.	1.1	40
11	Nettle fibre (<i>Urtica dioica</i> L.) reinforced poly(lactic acid): A first approach. Journal of Composite Materials, 2012, 46, 3077-3087.	1.2	35
12	Single fibre pull-out test versus short beam shear test: comparing different methods to assess the interfacial shear strength. Journal of Materials Science, 2013, 48, 3248-3253.	1.7	28
13	Measuring fibre orientation in sisal fibre-reinforced, injection moulded polypropylene – Pros and cons of the experimental methods to validate injection moulding simulation. Composites Part A: Applied Science and Manufacturing, 2017, 95, 54-64.	3.8	27
14	Functional gradients in the pericarp of the green coconut inspire asymmetric fibre-composites with improved impact strength, and preserved flexural and tensile properties. Bioinspiration and Biomimetics, 2017, 12, 026009.	1.5	26
15	Plasma modification of manâ€made cellulose fibers (Lyocell) for improved fiber/matrix adhesion in poly(lactic acid) composites. Journal of Applied Polymer Science, 2013, 128, 4378-4386.	1.3	23
16	Composite models for compression moulded long regenerated cellulose fibre-reinforced brittle polylactide (PLA). Composites Science and Technology, 2017, 149, 55-63.	3.8	23
17	Using synchroton radiation-based micro-computer tomography (SR μ-CT) for the measurement of fibre orientations in cellulose fibre-reinforced polylactide (PLA) composites. Journal of Materials Science, 2014, 49, 450-460.	1.7	20

 $_{18}$ Impact and hardness optimisation of composite materials inspired by the babassu nut (<i>Orbignya) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{13}^{18}$

NINA GRAUPNER

#	Article	IF	CITATIONS
19	Rhubarb petioles inspire biodegradable cellulose fibre-reinforced PLA composites with increased impact strength. Composites Part A: Applied Science and Manufacturing, 2017, 98, 218-226.	3.8	20
20	Influence of Fiber Fineness, Fiber Maturity, and Nep Content on the Properties of Natural Fiber Reinforced Cotton-Epoxy Composites. Journal of Natural Fibers, 2008, 5, 289-315.	1.7	15
21	Copy paper as a source of reinforcement for biodegradable composites – Influence of fibre loading, processing method and layer arrangement – An overview. Composites Part A: Applied Science and Manufacturing, 2019, 120, 161-171.	3.8	15
22	Ductile viscose fibres and stiff basalt fibres for composite applications – An overview and the potential of hybridisation. Composites Part B: Engineering, 2020, 194, 108041.	5.9	15
23	Cellulose Fiber-Reinforced PLA versus PP. International Journal of Polymer Science, 2017, 2017, 1-10.	1.2	14
24	Man-Made Cellulose Fibres as Reinforcement for Poly(lactic acid) (PLA) Composites. Journal of Biobased Materials and Bioenergy, 2009, 3, 249-261.	0.1	11
25	Toddy Palm (Borassus Flabellifer) Fruit Fibre Bundles as Reinforcement in Polylactide (PLA) Composites: An Overview About Fibre and Composite Characteristics. Journal of Renewable Materials, 2019, 7, 693-711.	1.1	11
26	Novel Low-Twist Bast Fibre Yarns from Flax Tow for High-Performance Composite Applications. Materials, 2021, 14, 105.	1.3	11
27	Influence of sample thickness, curvature and notches on the Charpy impact strength - An approach to standardise the impact strength of curved test specimens and biological structures. Polymer Testing, 2021, 93, 106864.	2.3	9
28	Self-assembled fibrinogen nanofibers support fibroblast adhesion and prevent E. coli infiltration. Materials Science and Engineering C, 2021, 126, 112156.	3.8	8
29	As tough as it is delicious? A mechanical and structural analysis of red rhubarb (Rheum rhabarbarum). Journal of Materials Science, 2009, 44, 4195-4199.	1.7	7
30	Three-dimensional braiding of continuous regenerated cellulose fibres. Journal of Industrial Textiles, 2016, 45, 707-715.	1.1	7
31	Size effects of viscose fibres and their unidirectional epoxy composites: application of least squares Weibull statistics. Cellulose, 2018, 25, 3407-3421.	2.4	7
32	Hemp From Disordered Lines for New Staple Fibre Yarns and High-Performance Composite Applications. Frontiers in Materials, 2022, 8, .	1.2	6
33	A Competitive Study of the Static and Fatigue Performance of Flax, Glass, and Flax/Glass Hybrid Composites on the Structural Example of a Light Railway Axle Tie. Frontiers in Materials, 2022, 9, .	1.2	6
34	The Influence of Lyocell and Kenaf Fibres on the Mechanical Characteristics of Poly(lactic acid) (PLA) Composites. Journal of Biobased Materials and Bioenergy, 2012, 6, 500-507.	0.1	4
35	Interfacial and Interlaminar Shear Strength of Unidirectional Viscose Fibre-Reinforced Epoxy Composites—an Overview of the Comparability of Results Obtained by Different Test Methods. Frontiers in Materials, 2022, 9, .	1.2	2