List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5932597/publications.pdf Version: 2024-02-01

ZHEN FANC

#	Article	lF	CITATIONS
1	Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water. Industrial & Engineering Chemistry Research, 2000, 39, 2883-2890.	3.7	609
2	Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. Journal of Supercritical Fluids, 1998, 13, 253-259.	3.2	342
3	Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology, 2008, 99, 3424-3430.	9.6	333
4	Ultrasound-enhanced conversion of biomass to biofuels. Progress in Energy and Combustion Science, 2014, 41, 56-93.	31.2	319
5	Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy, 2011, 36, 777-784.	8.8	282
6	Observation of Surface Precipitation of Arsenate on Ferrihydrite. Environmental Science & Technology, 2006, 40, 3248-3253.	10.0	245
7	Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 2016, 55, 98-194.	31.2	234
8	Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chemistry, 2018, 20, 3657-3682.	9.0	233
9	Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 2012, 38, 672-690.	31.2	226
10	Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process. Energy Conversion and Management, 2010, 51, 2802-2807.	9.2	180
11	Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide–ionic liquid mixtures. Bioresource Technology, 2012, 112, 313-318.	9.6	160
12	Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel, 2007, 86, 1614-1622.	6.4	142
13	Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chemical Engineering Journal, 2020, 399, 125808.	12.7	128
14	Decomposition of Cellulose and Glucose in Hot-Compressed Water under Catalyst-Free Conditions Journal of Chemical Engineering of Japan, 1998, 31, 131-134.	0.6	126
15	Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Applied Catalysis B: Environmental, 2017, 200, 182-191.	20.2	124
16	Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures. Applied Catalysis B: Environmental, 2018, 227, 79-89.	20.2	118
17	Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst. Energy, 2014, 68, 584-591.	8.8	117
18	Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chemical Engineering Science, 2019, 195, 935-945.	3.8	112

#	Article	IF	CITATIONS
19	Cycloamination strategies for renewable N-heterocycles. Green Chemistry, 2020, 22, 582-611.	9.0	100
20	Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Applied Catalysis B: Environmental, 2016, 190, 103-114.	20.2	98
21	Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catalysis Today, 2019, 319, 172-181.	4.4	98
22	Catalytic hydrothermal gasification of cellulose and glucose. International Journal of Hydrogen Energy, 2008, 33, 981-990.	7.1	97
23	Review and prospects of Jatropha biodiesel industry in China. Renewable and Sustainable Energy Reviews, 2012, 16, 2178-2190.	16.4	96
24	One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids. Bioresource Technology, 2011, 102, 6469-6472.	9.6	93
25	Direct Conversion of Sugars and Ethyl Levulinate into γ-Valerolactone with Superparamagnetic Acid–Base Bifunctional ZrFeO _{<i>x</i>} Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2016, 4, 236-246.	6.7	90
26	Impact and prospective of fungal preâ€ŧreatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining, 2012, 6, 335-350.	3.7	89
27	Hydrogen Production from Cellulose in Hot Compressed Water Using Reduced Nickel Catalyst: Product Distribution at Different Reaction Temperatures Journal of Chemical Engineering of Japan, 1998, 31, 488-491.	0.6	80
28	Biodiesel production directly from oils with high acid value by magnetic Na 2 SiO 3 @Fe 3 O 4 /C catalyst and ultrasound. Fuel, 2015, 150, 370-377.	6.4	80
29	Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnology for Biofuels, 2011, 4, 56.	6.2	77
30	Orderly Layered Zrâ€Benzylphosphonate Nanohybrids for Efficient Acid–Baseâ€Mediated Bifunctional/Cascade Catalysis. ChemSusChem, 2017, 10, 681-686.	6.8	77
31	Extraction of Taiheiyo coal with supercritical water–HCOOH mixture. Fuel, 2000, 79, 243-248.	6.4	73
32	Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran from Bioderived 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2017, 5, 11280-11289.	6.7	73
33	Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid. Applied Energy, 2017, 204, 702-714.	10.1	70
34	Biodiesel production direct from high acid value oil with a novel magnetic carbonaceous acid. Applied Energy, 2015, 155, 637-647.	10.1	69
35	N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks. Nature Communications, 2019, 10, 699.	12.8	69
36	Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catalysis Today, 2019, 319, 84-92.	4.4	68

#	Article	IF	CITATIONS
37	Soybean biodiesel production using synergistic CaO/Ag nano catalyst: Process optimization, kinetic study, and economic evaluation. Industrial Crops and Products, 2021, 166, 113479.	5.2	68
38	Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures. Applied Catalysis B: Environmental, 2017, 215, 18-27.	20.2	67
39	Levoglucosan and its hydrolysates via fast pyrolysis of lignocellulose for microbial biofuels: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2019, 105, 215-229.	16.4	65
40	Transesterification mechanism of soybean oil to biodiesel catalyzed by calcined sodium silicate. Fuel, 2012, 93, 468-472.	6.4	64
41	Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts. Applied Energy, 2014, 113, 1819-1825.	10.1	63
42	Catalytic production of Jatropha biodiesel and hydrogen with magnetic carbonaceous acid and base synthesized from Jatropha hulls. Energy Conversion and Management, 2017, 142, 107-116.	9.2	62
43	Phase behavior and reaction of polyethylene terephthalate–water systems at pressures up to 173 MPa and temperatures up to 490°C. Journal of Supercritical Fluids, 1999, 15, 229-243.	3.2	61
44	A Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates. Green Chemistry, 2017, 19, 2101-2106.	9.0	61
45	One-step production of biodiesel from Jatropha oils with high acid value at low temperature by magnetic acid-base amphoteric nanoparticles. Chemical Engineering Journal, 2018, 348, 929-939.	12.7	61
46	Metal–organic framework-based functional catalytic materials for biodiesel production: a review. Green Chemistry, 2021, 23, 2595-2618.	9.0	60
47	Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca. Bioresource Technology, 2012, 107, 405-410.	9.6	59
48	Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave. Scientific Reports, 2015, 5, 17538.	3.3	59
49	Production of glucose by hydrolysis of cellulose at 423K in the presence of activated hydrotalcite nanoparticles. Bioresource Technology, 2011, 102, 8017-8021.	9.6	55
50	Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems. Journal of Supercritical Fluids, 2009, 47, 431-446.	3.2	54
51	Production of biodiesel and lactic acid from rapeseed oil using sodium silicate as catalyst. Bioresource Technology, 2011, 102, 6884-6886.	9.6	53
52	Direct Catalytic Transformation of Biomass Derivatives into Biofuel Component γâ€Valerolactone with Magnetic Nickel–Zirconium Nanoparticles. ChemPlusChem, 2016, 81, 135-142.	2.8	52
53	Production of biodiesel and hydrogen from plant oil catalyzed by magnetic carbon-supported nickel and sodium silicate. Green Chemistry, 2016, 18, 3302-3314.	9.0	52
54	Combination of dilute acid and ionic liquid pretreatments of sugarcane bagasse for glucose by enzymatic hydrolysis. Process Biochemistry, 2013, 48, 1942-1946.	3.7	49

#	Article	IF	CITATIONS
55	One-step production of biodiesel from oils with high acid value by activated Mg–Al hydrotalcite nanoparticles. Bioresource Technology, 2015, 193, 84-89.	9.6	49
56	Hydrothermal amination of biomass to nitrogenous chemicals. Green Chemistry, 2021, 23, 6675-6697.	9.0	48
57	Complete dissolution and hydrolysis of wood in hot water. AICHE Journal, 2008, 54, 2751-2758.	3.6	47
58	Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash. Applied Energy, 2020, 264, 114735.	10.1	45
59	Phase behavior and reaction of polyethylene in supercritical water at pressures up to 2.6 GPa and temperatures up to 670ŰC. Journal of Supercritical Fluids, 2000, 16, 207-216.	3.2	43
60	High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis. Bioresource Technology, 2014, 153, 69-78.	9.6	39
61	Destruction of deca-chlorobiphenyl in supercritical water under oxidizing conditions with and without Na2CO3. Journal of Supercritical Fluids, 2005, 33, 247-258.	3.2	37
62	Pretreatment of microcrystalline cellulose in organic electrolyte solutions for enzymatic hydrolysis. Biotechnology for Biofuels, 2011, 4, 53.	6.2	36
63	Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum. Scientific Reports, 2016, 6, 27205.	3.3	36
64	Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries, 2016, , .	0.5	36
65	High-concentrated substrate enzymatic hydrolysis of pretreated rice straw with glycerol and aluminum chloride at low cellulase loadings. Bioresource Technology, 2019, 294, 122164.	9.6	35
66	Recent Advances of Producing Biobased N-Containing Compounds via Thermo-Chemical Conversion with Ammonia Process. Energy & Fuels, 2020, 34, 10441-10458.	5.1	35
67	Complete recovery of cellulose from rice straw pretreated with ethylene glycol and aluminum chloride for enzymatic hydrolysis. Bioresource Technology, 2019, 284, 98-104.	9.6	34
68	Subcritical water gasification of lignocellulosic wastes for hydrogen production with Co modified Ni/Al2O3 catalysts. Journal of Supercritical Fluids, 2020, 162, 104863.	3.2	34
69	Behavior of Metals during Combustion of Industrial Organic Wastes in Supercritical Water. Industrial & Engineering Chemistry Research, 2000, 39, 4536-4542.	3.7	32
70	Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology, 2013, , .	0.6	32
71	Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, 2014, , .	0.5	30
72	Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries, 2017, , .	0.5	30

#	Article	IF	CITATIONS
73	Hydrolysis of cellulose to glucose at the low temperature of 423K with CaFe2O4-based solid catalyst. Bioresource Technology, 2012, 124, 440-445.	9.6	28
74	Production of 2,3-butanediol from cellulose and Jatropha hulls after ionic liquid pretreatment and dilute-acid hydrolysis. AMB Express, 2013, 3, 48.	3.0	28
75	Catalytic fast pyrolysis of polyethylene terephthalate plastic for the selective production of terephthalonitrile under ammonia atmosphere. Waste Management, 2019, 92, 97-106.	7.4	28
76	Phase behavior and combustion of hydrocarbon-contaminated sludge in supercritical water at pressures up to 822 MPa and temperatures up to 535ŰC. Proceedings of the Combustion Institute, 2000, 28, 2717-2725.	3.9	27
77	Hydrothermal conversion of glycerol to chemicals and hydrogen: review and perspective. Biofuels, Bioproducts and Biorefining, 2012, 6, 686-702.	3.7	27
78	"One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids―[Bioresour. Technol. 102 (11) (2011)]. Bioresource Technology, 2013, 140, 447-450.	9.6	26
79	Oil Production by the Oleaginous Yeast Lipomyces starkeyi using Diverse Carbon Sources. BioResources, 2014, 9, .	1.0	26
80	Ball milling pretreatment and diluted acid hydrolysis of oil palm empty fruit bunch (EFB) fibres for the production of levulinic acid. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52, 85-92.	5.3	26
81	Microbial lipid production from rice straw hydrolysates and recycled pretreated glycerol. Bioresource Technology, 2020, 312, 123580.	9.6	26
82	Lignin-derived layered 3D biochar with controllable acidity for enhanced catalytic upgrading of Jatropha oil to biodiesel. Catalysis Today, 2022, 404, 35-48.	4.4	26
83	Destruction of Decachlorobiphenyl Using Supercritical Water Oxidation. Energy & Fuels, 2004, 18, 1257-1265.	5.1	25
84	Sequential hydrothermal gasification of biomass to hydrogen. Proceedings of the Combustion Institute, 2005, 30, 2231-2237.	3.9	24
85	Phase changes of benzo(a)pyrene in supercritical water combustion. Combustion and Flame, 2001, 124, 255-267.	5.2	23
86	Coproduction of Furfural and Easily Hydrolyzable Residue from Sugar Cane Bagasse in the MTHF/Aqueous Biphasic System: Influence of Acid Species, NaCl Addition, and MTHF. ACS Sustainable Chemistry and Engineering, 2016, 4, 5804-5813.	6.7	23
87	Continuous Synthesis of Tin and Indium Oxide Nanoparticles in Sub―and Supercritical Water. Journal of the American Ceramic Society, 2007, 90, 2367-2371.	3.8	22
88	Production of Biofuels and Chemicals with Microwave. Biofuels and Biorefineries, 2015, , .	0.5	22
89	Reaction of d-glucose in water at high temperatures (410°C) and pressures (180MPa) for the production of dyes and nano-particles. Journal of Supercritical Fluids, 2011, 56, 41-47.	3.2	21
90	Production of liquid fuel intermediates from furfural via aldol condensation over La2O2CO3-ZnO-Al2O3 catalyst. Catalysis Communications, 2021, 149, 106207.	3.3	20

#	Article	IF	CITATIONS
91	Selection of high-oil-yield seed sources of <i>Jatropha curcas L.</i> for biodiesel production. Biofuels, 2010, 1, 705-717.	2.4	19
92	Properties and phase equilibria of fluid mixtures as the basis for developing green chemical processes. Fluid Phase Equilibria, 2011, 302, 65-73.	2.5	19
93	A Kinetic Study on Acid Hydrolysis of Oil Palm Empty Fruit Bunch Fibers Using a Microwave Reactor System. Energy & Fuels, 2014, 28, 2589-2597.	5.1	18
94	Catalytic hydrothermal co-gasification of canola meal and low-density polyethylene using mixed metal oxides for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 42084-42098.	7.1	18
95	Characterization of a new magnesium hydrogen orthophosphate salt, Mg3.5H2(PO4)3, synthesized in supercritical water. Solid State Sciences, 2007, 9, 385-393.	3.2	16
96	Biodiesel Production with Solid Catalysts. , 0, , .		15
97	Cellulase immobilized on mesoporous biochar synthesized by ionothermal carbonization of cellulose. Cellulose, 2018, 25, 2473-2485.	4.9	15
98	Selective Production of Terephthalonitrile and Benzonitrile via Pyrolysis of Polyethylene Terephthalate (PET) with Ammonia over Ca(OH)2/Al2O3 Catalysts. Catalysts, 2019, 9, 436.	3.5	15
99	Production of aromatic amines via catalytic co-pyrolysis of lignin and phenol-formaldehyde resins with ammonia over commercial HZSM-5 zeolites. Bioresource Technology, 2021, 320, 124252.	9.6	15
100	Efficient saccharification of wheat straw pretreated by solid particle-assisted ball milling with waste washing liquor recycling. Bioresource Technology, 2022, 347, 126721.	9.6	15
101	A comparative study of polystyrene decomposition in supercritical water and air environments using diamond anvil cell. Journal of Applied Polymer Science, 2001, 81, 3565-3577.	2.6	14
102	Pretreatment of Eastern White Pine (Pinus strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions. ACS Sustainable Chemistry and Engineering, 2016, 4, 2822-2829.	6.7	14
103	Properties, Chemical Characteristics and Application of Lignin and Its Derivatives. Biofuels and Biorefineries, 2016, , 3-33.	0.5	14
104	Efficient Cu catalyst for 5-hydroxymethylfurfural hydrogenolysis by forming Cu–O–Si bonds. Catalysis Science and Technology, 2020, 10, 7323-7330.	4.1	14
105	Fundamentals of Acoustic Cavitation in Sonochemistry. Biofuels and Biorefineries, 2015, , 3-33.	0.5	14
106	A model of the energy-supply and demand system at the village level. Energy, 1993, 18, 365-369.	8.8	13
107	Synthesis, characterization and properties of erbium-based nanofibres and nanorods. Nanotechnology, 2007, 18, 445606.	2.6	13
108	2,3-Butanediol and Acetoin Production from Enzymatic Hydrolysate of Ionic Liquid-pretreated Cellulose by Paenibacillus polymyxa. BioResources, 2014, 10, .	1.0	13

#	Article	IF	CITATIONS
109	Flamelless oxidation of chlorinated wastes in supercritical water using sodium carbonate as the oxidation stimulant. Proceedings of the Combustion Institute, 2002, 29, 2485-2492.	3.9	12
110	A study of rubber liquefaction in supercritical water using DAC-stereomicroscopy and FT-IR spectrometry. Fuel, 2002, 81, 935-945.	6.4	12
111	Synthesis of nanocrystalline SnO2 in supercritical water. Journal of Nanoparticle Research, 2007, 9, 683-687.	1.9	12
112	Production of Liquefied Oil Palm Empty Fruit Bunch Based Polyols via Microwave Heating. Energy & Fuels, 2017, 31, 10975-10982.	5.1	12
113	Synergistic Catalysis of Coâ€Zr/CN <i>_x</i> Bimetallic Nanoparticles Enables Reductive Amination of Biobased Levulinic Acid. Advanced Sustainable Systems, 2022, 6, .	5.3	12
114	One-Pot Microwave-Assisted Hydrolysis of Cellulose and Hemicellulose in Selected Tropical Plant Wastes by NaOH-Freeze Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 5166-5174.	6.7	11
115	Co-production of phenolic oil and CaO/char deoxidation catalyst via catalytic fast pyrolysis of phenol-formaldehyde resin with Ca(OH)2. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104663.	5.5	11
116	Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust. Renewable Energy, 2021, 175, 1001-1011.	8.9	11
117	High yield production of levoglucosan via catalytic pyrolysis of cellulose at low temperature. Fuel, 2022, 323, 124369.	6.4	11
118	Hydrothermal synthesis, crystal structure, and vibrational and Mössbauer spectra of a new tricationic orthophosphate — KCo3Fe(PO4)3. Canadian Journal of Chemistry, 2006, 84, 124-133.	1.1	10
119	Synthesis of erbium hydroxide microflowers and nanostructures in subcritical water. Nanotechnology, 2008, 19, 185606.	2.6	10
120	Efficient production of biodiesel at low temperature using highly active bifunctional Na-Fe-Ca nanocatalyst from blast furnace waste. Fuel, 2022, 322, 124168.	6.4	10
121	Production of Biofuels and Chemicals with Ultrasound. Biofuels and Biorefineries, 2015, , .	0.5	9
122	Biodiesel - Feedstocks, Production and Applications. , 2012, , .		9
123	Biofuels - Economy, Environment and Sustainability. , 2013, , .		9
124	Use of methanol and oxygen in promoting the destruction of deca-chlorobiphenyl in supercritical water. Fuel, 2008, 87, 353-358.	6.4	8
125	Noncatalytic fast hydrolysis of wood. Bioresource Technology, 2011, 102, 3587-3590.	9.6	8
126	Production of Hydrogen from Renewable Resources. Biofuels and Biorefineries, 2015, , .	0.5	8

#	Article	IF	CITATIONS
127	Efficient production of biodiesel with electric furnace dust impregnated in Na2CO3 solution. Journal of Cleaner Production, 2022, 330, 129772.	9.3	7
128	Production of Biofuels and Chemicals with Bifunctional Catalysts. Biofuels and Biorefineries, 2017, , .	0.5	6
129	Introduction to Pyrolysis as a Thermo-Chemical Conversion Technology. Biofuels and Biorefineries, 2020, , 3-30.	0.5	6
130	Highly stable heterogeneous catalysts from electric furnace dust for biodiesel production: Optimization, performance and reaction kinetics. Catalysis Today, 2022, 404, 78-92.	4.4	6
131	Hydrogen production from cotton stalk over Ni-La catalysts supported on spent bleaching clay via hydrothermal gasification. Industrial Crops and Products, 2022, 186, 115228.	5.2	6
132	Oxidation of naphthalene in supercritical water up to 420°C and 30 MPA. Combustion Science and Technology, 2003, 175, 291-318.	2.3	5
133	Shape-controlled Synthesis of Activated Bio-chars by Surfactant-templated Ionothermal Carbonization in Acidic Ionic Liquid and Activation with Carbon Dioxide. BioResources, 2014, 9, .	1.0	5
134	Production of Versatile Platform Chemical 5-Hydroxymethylfurfural from Biomass in Ionic Liquids. Biofuels and Biorefineries, 2014, , 223-254.	0.5	5
135	Rapid Degradation of Rhodamine B through Visible-Photocatalytic Advanced Oxidation Using Self-Degradable Natural Perylene Quinone Derivatives—Hypocrellins. Bioengineering, 2022, 9, 307.	3.5	5
136	Solid- and Nano-Catalysts Pretreatment and Hydrolysis Techniques. Green Energy and Technology, 2013, , 339-366.	0.6	4
137	How can we best solubilize lignocellulosic biomass for hydrolysis?. Biofuels, Bioproducts and Biorefining, 2015, 9, 621-622.	3.7	4
138	Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, 2020, , .	0.5	4
139	Highly stable NaFeO2-Fe3O4 composite catalyst from blast furnace dust for efficient production of biodiesel at low temperature. Industrial Crops and Products, 2022, 182, 114937.	5.2	4
140	Fundamentals of Bifunctional Catalysis for Transforming Biomass-Related Compounds into Chemicals and Biofuels. Biofuels and Biorefineries, 2017, , 3-30.	0.5	3
141	Production of Materials from Sustainable Biomass Resources. Biofuels and Biorefineries, 2019, , .	0.5	3
142	Synthesis of jet fuel intermediates via aldol condensation of biomass-derived furfural with lanthanide catalyst. Molecular Catalysis, 2021, 515, 111893.	2.0	3
143	CHAPTER 19. Hydrothermal Events Occurring During Gasification in Supercritical Water. RSC Green Chemistry, 2018, , 560-587.	0.1	3
144	Rural Energy Resources: Applications and Consumption in China. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1994, 16, 229-239.	0.5	2

#	Article	IF	CITATIONS
145	Cellulose hydrolysis in supercritical water to recover chemicals. , 2000, , 205-220.		2
146	Supercritical Water Process. Engineering Materials, 2010, , 11-27.	0.6	2
147	Catalytic Biomass to Renewable Biofuels and Biomaterials. Catalysts, 2020, 10, 480.	3.5	2
148	Techno-economic Analysis of Renewable Hydrogen Production via SCWG of Biomass Using Glucose as a Model Compound. Biofuels and Biorefineries, 2014, , 445-471.	0.5	2
149	Conference Report: World Congress of Bioenergy, 2012: renewable energy for sustainability. Biofuels, 2012, 3, 377-378.	2.4	1
150	Corrigendum to "Solid acid mediated hydrolysis of biomass for producing biofuels―[Prog Energ Combust Sci (2012) 672–690]. Progress in Energy and Combustion Science, 2013, 39, 284.	31.2	1
151	Characteristics of Products from Hydrothermal Carbonization of Bamboo. Applied Mechanics and Materials, 2014, 654, 7-10.	0.2	1
152	Special Issue on Hydrothermal and Solvothermal Approaches toward Bio-products. Journal of Supercritical Fluids, 2020, 165, 104975.	3.2	1
153	Nano-Structured Coatings. Engineering Materials, 2010, , 57-62.	0.6	1
154	Status and Perspective of Organic Solvent Based Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. Green Energy and Technology, 2013, , 309-337.	0.6	0
155	Deproteinated palm kernel cake-derived oligosaccharides: A preliminary study. , 2014, , .		0
156	Optimization of Mannose Yield from Deproteinated Palm Kernel Cake via Dilute Fumaric Acid Hydrolysis. Advanced Materials Research, 0, 911, 302-306.	0.3	0
157	Introduction to Characterization Methods for Heterogeneous Catalysts and Their Application to Cellulose Conversion Mechanisms. Biofuels and Biorefineries, 2017, , 31-96.	0.5	0
158	Conclusions and Future Prospects. Engineering Materials, 2010, , 87-92.	0.6	0
159	Other Materials Synthesis. Engineering Materials, 2010, , 63-69.	0.6	0
160	Fine Organics Particles by Precipitation of Solute. Engineering Materials, 2010, , 71-86.	0.6	0
161	Metal Oxides Synthesis. Engineering Materials, 2010, , 29-55.	0.6	0
162	Black Liquor Pyrolysis and Char Reactivity. , 1997, , 294-304.		0

Black Liquor Pyrolysis and Char Reactivity. , 1997, , 294-304. 162