Laurent Chatel-Chaix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5932334/publications.pdf

Version: 2024-02-01

LAUDENT CHATEL-CHAIX

#	Article	IF	CITATIONS
1	Ultrastructural Characterization of Zika Virus Replication Factories. Cell Reports, 2017, 18, 2113-2123.	2.9	274
2	Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses. Cell Host and Microbe, 2016, 20, 342-356.	5.1	207
3	Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins. PLoS Pathogens, 2015, 11, e1005277.	2.1	165
4	Interaction of Staufen1 with the 5' end of mRNA facilitates translation of these RNAs. Nucleic Acids Research, 2005, 33, 4797-4812.	6.5	133
5	Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA. Journal of Cell Science, 2010, 123, 369-383.	1.2	112
6	Identification of Staufen in the Human Immunodeficiency Virus Type 1 Gag Ribonucleoprotein Complex and a Role in Generating Infectious Viral Particles. Molecular and Cellular Biology, 2004, 24, 2637-2648.	1.1	111
7	Dengue Virus- and Hepatitis C Virus-Induced Replication and Assembly Compartments: the Enemy Inside—Caught in the Web. Journal of Virology, 2014, 88, 5907-5911.	1.5	109
8	Trafficking of HIV-1 RNA is Mediated by Heterogeneous Nuclear Ribonucleoprotein A2 Expression and Impacts on Viral Assembly. Traffic, 2006, 7, 1177-1193.	1.3	105
9	Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62. Journal of Virology, 2015, 89, 8026-8041.	1.5	100
10	A pan-serotype dengue virusÂinhibitor targeting the NS3–NS4BÂinteraction. Nature, 2021, 598, 504-509.	13.7	90
11	The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Frontiers in Genetics, 2018, 9, 595.	1.1	81
12	Elucidating Novel Hepatitis C Virus–Host Interactions Using Combined Mass Spectrometry and Functional Genomics Approaches. Molecular and Cellular Proteomics, 2014, 13, 184-203.	2.5	61
13	The Host Protein Staufen1 Participates in Human Immunodeficiency Virus Type 1 Assembly in Live Cells by Influencing pr55 Gag Multimerization. Journal of Virology, 2007, 81, 6216-6230.	1.5	60
14	Genome-wide RNAi Screen Reveals a New Role of a WNT/CTNNB1 Signaling Pathway as Negative Regulator of Virus-induced Innate Immune Responses. PLoS Pathogens, 2013, 9, e1003416.	2.1	60
15	A Combined Genetic-Proteomic Approach Identifies Residues within Dengue Virus NS4B Critical for Interaction with NS3 and Viral Replication. Journal of Virology, 2015, 89, 7170-7186.	1.5	56
16	Hepatitis C Virus NS3/4A Protease Inhibitors: A Light at the End of the Tunnel. Viruses, 2010, 2, 1752-1765.	1.5	48
17	A Host YB-1 Ribonucleoprotein Complex Is Hijacked by Hepatitis C Virus for the Control of NS3-Dependent Particle Production. Journal of Virology, 2013, 87, 11704-11720.	1.5	45
18	Y-Box-Binding Protein 1 Interacts with Hepatitis C Virus NS3/4A and Influences the Equilibrium between Viral RNA Replication and Infectious Particle Production. Journal of Virology, 2011, 85, 11022-11037.	1.5	36

LAURENT CHATEL-CHAIX

#	Article	IF	CITATIONS
19	Direct-acting and host-targeting HCV inhibitors: current and future directions. Current Opinion in Virology, 2012, 2, 588-598.	2.6	32
20	Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response. PLoS Pathogens, 2016, 12, e1005772.	2.1	25
21	A Non-Replicative Role of the 3′ Terminal Sequence of the Dengue Virus Genome in Membranous Replication Organelle Formation. Cell Reports, 2020, 32, 107859.	2.9	23
22	Amaryllidaceae Alkaloid Cherylline Inhibits the Replication of Dengue and Zika Viruses. Antimicrobial Agents and Chemotherapy, 2021, 65, e0039821.	1.4	21
23	The Interplay between Dengue Virus and the Human Innate Immune System: A Game of Hide and Seek. Vaccines, 2019, 7, 145.	2.1	20
24	Targeted impairment of innate antiviral responses in the liver of chronic hepatitis C patients. Journal of Hepatology, 2012, 56, 70-77.	1.8	18
25	Reciprocal Effects of Fibroblast Growth Factor Receptor Signaling on Dengue Virus Replication and Virion Production. Cell Reports, 2019, 27, 2579-2592.e6.	2.9	17
26	<scp>Valosinâ€containing protein ATPase activity regulates the morphogenesis of Zika virus replication organelles and virusâ€induced cell death</scp> . Cellular Microbiology, 2021, 23, e13302.	1.1	11
27	Determinants in Nonstructural Protein 4A of Dengue Virus Required for RNA Replication and Replication Organelle Biogenesis. Journal of Virology, 2021, 95, e0131021.	1.5	10
28	The Biogenesis of Dengue Virus Replication Organelles Requires the ATPase Activity of Valosin-Containing Protein. Viruses, 2021, 13, 2092.	1.5	10
29	An epigenetic â€~extreme makeover': the methylation of flaviviral RNA (and beyond). RNA Biology, 2021, 18, 696-708.	1.5	7
30	Production, Titration and Imaging of Zika Virus in Mammalian Cells. Bio-protocol, 2018, 8, e3115.	0.2	7
31	Fragment-Based Phenotypic Lead Discovery To Identify New Drug Seeds That Target Infectious Diseases. ACS Chemical Biology, 2021, 16, 2158-2163.	1.6	6
32	A monocytic detour to replicate patientâ€derived hepatitis C virus in hepatoma cells and its use for phenotypic analyses. Hepatology, 2015, 61, 1112-1114.	3.6	0