Qijin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5932284/publications.pdf

Version: 2024-02-01

		516710	839539
19	1,625	16	18
papers	citations	h-index	g-index
19	19	19	2607
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Advanced Materials Technologies, 2019, 4, 1800546.	5.8	307
2	Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale, 2014, 6, 1622-1628.	5.6	236
3	Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale, 2018, 10, 6806-6811.	5.6	208
4	Nanomaterialâ€Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Advanced Materials, 2020, 32, e1902343.	21.0	198
5	Highly Thermostable, Flexible, Transparent, and Conductive Films on Polyimide Substrate with an AZO/AgNW/AZO Structure. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4299-4305.	8.0	102
6	Highly flexible and transparent film heaters based on polyimide films embedded with silver nanowires. RSC Advances, 2015, 5, 45836-45842.	3.6	97
7	Inkjet Printing of Silver Nanowires for Stretchable Heaters. ACS Applied Nano Materials, 2018, 1, 4528-4536.	5.0	87
8	Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity. Materials Chemistry and Physics, 2014, 147, 550-556.	4.0	77
9	Gravure Printing of Water-based Silver Nanowire ink on Plastic Substrate for Flexible Electronics. Scientific Reports, 2018, 8, 15167.	3.3	64
10	Flexible transparent conductive films on PET substrates with an AZO/AgNW/AZO sandwich structure. Journal of Materials Chemistry C, 2014, 2, 3750-3755.	5.5	50
11	Synthesis of colourless silver precursor ink for printing conductive patterns on silicon nitride substrates. Applied Surface Science, 2012, 258, 7384-7388.	6.1	34
12	Fabrication of Flexible Transparent Conductive Films with Silver Nanowire by Vacuum Filtration and PET Mold Transfer. Journal of Materials Science and Technology, 2016, 32, 158-161.	10.7	32
13	Direct Embedment and Alignment of Silver Nanowires by Inkjet Printing for Stretchable Conductors. ACS Applied Electronic Materials, 2020, 2, 3289-3298.	4.3	31
14	Patterning of Metal Nanowire Networks: Methods and Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60736-60762.	8.0	30
15	Controlling the self-folding of a polymer sheet using a local heater: the effect of the polymer–heater interface. Soft Matter, 2017, 13, 3863-3870.	2.7	27
16	Room-temperature sintering of conductive Ag films on paper. Materials Letters, 2014, 123, 124-127.	2.6	20
17	Electrically conductive silver nanowires-filled methylcellulose composite transparent films with high mechanical properties. Materials Letters, 2015, 152, 173-176.	2.6	14
18	Printed Electronics: Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications (Adv. Mater. Technol. 5/2019). Advanced Materials Technologies, 2019, 4, 1970029.	5.8	11

#	Article	IF	CITATIONS
19	Separation of Silver Nanocrystals for Surface-enhanced Raman Scattering Using Density Gradient Centrifugation. Journal of Materials Science and Technology, 2015, 31, 834-839.	10.7	0