Grazia Totaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5931405/publications.pdf Version: 2024-02-01

Ωραγία Τοτάρο

#	Article	IF	CITATIONS
1	Durability of biopolymeric composites formulated with fillers from a byâ€product of coffee roasting. Polymer Composites, 2022, 43, 1485-1493.	4.6	7
2	Current Advances in the Sustainable Conversion of 5â€Hydroxymethylfurfural into 2,5â€Furandicarboxylic Acid. ChemSusChem, 2022, 15, .	6.8	35
3	Enzymatic Degradation of the Most Common Aliphatic Bio-Polyesters and Evaluation of the Mechanisms Involved: An Extended Study. Polymers, 2022, 14, 1850.	4.5	32
4	Bio-Based Furan-Polyesters/Graphene Nanocomposites Prepared by In Situ Polymerization. Polymers, 2021, 13, 1377.	4.5	3
5	Alkali-Activated Mortars Modified by Epoxy-Carbon Fiber Composites Wastes. Applied Sciences (Switzerland), 2021, 11, 6110.	2.5	2
6	Monomers, Materials and Energy from Coffee By-Products: A Review. Sustainability, 2021, 13, 6921.	3.2	20
7	End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. ChemSusChem, 2021, 14, 4167-4175.	6.8	49
8	Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops and Products, 2021, 170, 113742.	5.2	21
9	Geopolymers Reinforced with Natural Fibers: A Comparison among Different Sources. Applied Sciences (Switzerland), 2021, 11, 11026.	2.5	8
10	Elastomeric/antibacterial properties in novel random Ricinus communis based-copolyesters. Polymer Testing, 2020, 90, 106719.	4.8	4
11	Chain extender effect of 3-(4-hydroxyphenyl)propionic acid/layered double hydroxide in biopolyesters containing the succinate moiety. New Journal of Chemistry, 2020, 44, 10127-10136.	2.8	3
12	Organo-modified LDH fillers endowing multi-functionality to bio-based poly(butylene succinate): An extended study from the laboratory to possible market. Applied Clay Science, 2020, 188, 105502.	5.2	21
13	Formulation of Green Particulate Composites from PLA and PBS Matrix and Wastes Deriving from the Coffee Production. Journal of Polymers and the Environment, 2019, 27, 1488-1496.	5.0	37
14	Olive Mill Wastewater Valorization in Multifunctional Biopolymer Composites for Antibacterial Packaging Application. International Journal of Molecular Sciences, 2019, 20, 2376.	4.1	10
15	A new valorization route for Olive Mill wastewater: Improvement of durability of PP and PBS composites through multifunctional hybrid systems. Journal of Environmental Chemical Engineering, 2019, 7, 103026.	6.7	12
16	Outstanding chain-extension effect and high UV resistance of polybutylene succinate containing amino-acid-modified layered double hydroxides. Beilstein Journal of Nanotechnology, 2019, 10, 684-695.	2.8	10
17	Dual chain extension effect and antibacterial properties of biomolecules interleaved within LDH dispersed into PBS by <i>in situ</i> polymerization. Dalton Transactions, 2018, 47, 3155-3165.	3.3	21
18	A new route of valorization of rice endosperm by-product: Production of polymeric biocomposites. Composites Part B: Engineering, 2018, 139, 195-202.	12.0	29

GRAZIA TOTARO

#	Article	IF	CITATIONS
19	Biobased Vanillic Acid and Ricinoleic Acid: Building Blocks for Fully Renewable Copolyesters. Journal of Renewable Materials, 2018, 6, 126-135.	2.2	32
20	Composites for « white and green » solutions: Coupling UV resistance and chain extension effect from poly(butylene succinate) and layered double hydroxides composites. Journal of Solid State Chemistry, 2018, 268, 9-15.	2.9	9
21	Enzymatically treated curaua fibers in poly(butylene succinate)-based biocomposites. Journal of Environmental Chemical Engineering, 2018, 6, 4452-4458.	6.7	20
22	Bio-Based PA11/Graphene Nanocomposites Prepared by In Situ Polymerization. Journal of Nanoscience and Nanotechnology, 2018, 18, 1169-1175.	0.9	16
23	Chain extender effect of 3-(4-hydroxyphenyl)propionic acid/layered double hydroxide in PBS bionanocomposites. European Polymer Journal, 2017, 94, 20-32.	5.4	15
24	Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills. Microbial Cell Factories, 2017, 16, 186.	4.0	32
25	Ski Boot Soles Based on a Glass Fiber/Rubber Composite with Improved Grip on Icy Surfaces. Procedia Engineering, 2016, 147, 372-377.	1.2	7
26	Photodegradation of TiO2 composites based on polyesters. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 275-283.	3.9	11
27	Evaluation of the retting process as a pre-treatment of vegetable fibers for the preparation of high-performance polymer biocomposites. Industrial Crops and Products, 2016, 81, 56-65.	5.2	55
28	Multicomponent reinforcing system for poly(butylene succinate): Composites containing poly(l-lactide) electrospun mats loaded with graphene. Polymer Testing, 2016, 50, 283-291.	4.8	35
29	The development of antibacterial and hydrophobic functionalities in natural fibers for fiber-reinforced composite materials. Journal of Environmental Chemical Engineering, 2016, 4, 1743-1752.	6.7	25
30	Poly(butylene succinate) bionanocomposites: a novel bio-organo-modified layered double hydroxide for superior mechanical properties. RSC Advances, 2016, 6, 4780-4791.	3.6	27
31	Electrospun Fibers Containing Bioâ€Based Ricinoleic Acid: Effect of Amount and Distribution of Ricinoleic Acid Unit on Antibacterial Properties. Macromolecular Materials and Engineering, 2015, 300, 1085-1095.	3.6	8
32	Use of ionic liquids based on phosphonium salts for preparing biocomposites by <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
33	Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnology, 2015, 32, 100-108.	4.4	162
34	Synthesis of castor oil-derived polyesters with antimicrobial activity. European Polymer Journal, 2014, 56, 174-184.	5.4	53
35	Ageing of PCCD aliphatic polyesters: Effect of stereochemistry and ionic chain terminals. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 292, 42-48.	3.9	6
36	X-ray diffraction and rheology cross-study of polymer chain penetrating surfactant tethered layered double hydroxide resulting into intermixed structure with polypropylene, poly(butylene)succinate and poly(dimethyl)siloxane. Applied Clay Science, 2014, 100, 102-111.	5.2	22

GRAZIA TOTARO

#	Article	IF	CITATIONS
37	Effect of 1,4•yclohexylene units on thermal properties of poly(1,4•yclohexylenedimethylene adipate) and similar aliphatic polyesters. Polymer International, 2013, 62, 1210-1217.	3.1	30
38	Poly(butylene succinate)/layered double hydroxide bionanocomposites: Relationships between chemical structure of LDH anion, delamination strategy, and final properties. Journal of Applied Polymer Science, 2013, 130, 1931-1940.	2.6	25
39	TiO2 deposition on the surface of activated fluoropolymer substrate. Thin Solid Films, 2012, 520, 2824-2828.	1.8	15
40	Antibacterial coatings on poly(fluoroethylenepropylene) films via grafting of 3-hexadecyl-1-vinylimidazolium bromide. Progress in Organic Coatings, 2012, 73, 257-263.	3.9	14