Feng Qi

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/593054/publications.pdf
Version: 2024-02-01

A complete monotonicity property of the gamma function. Journal of Mathematical Analysis and
$7 \quad$ Some completely monotonic functions involving polygamma functions and an application. Journal of Mathematical Analysis and Applications, 2005, 310, 303-308.$0.5 \quad 59$8 A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. Journal ofComputational and Applied Mathematics, 2019, 351, 1-5.
11 TWO NEW PROOFS OF THE COMPLETE MONOTONICITY OF A FUNCTION INVOLVING THE PSI FUNCTION. 0.3
Bulletin of the Korean Mathematical Society, 2010, 47, 103-111.0.449Bounds for the ratio of two gamma functions---From Wendel's and related inequalities to12 logarithmically completely monotonic functions. Banach Journal of Mathematical Analysis, 2012, 6,132-158.
13 Generalized weighted mean values with two parameters. Proceedings of the Royal Society A: 1.0 47 Mathematical, Physical and Engineering Sciences, 1998, 454, 2723-2732.

Logarithmically completely monotonic functions relating to the gamma function. Journal of Mathematical Analysis and Applications, 2006, 321, 405-411.

Refinements, Generalizations, and Applications of Jordan's Inequality and Related Problems. Journal of

Hermiteâ€"Hadamard type integral inequalities for geometric-arithmetically<i>s</i>-convex functions.
Analysis (Germany), 2013, 33, 197-208.
19
20

Some identities and an explicit formula for Bernoulli and Stirling numbers. Journal of Computational
1.1
On Integral Inequalities of Hermite-Hadamard Type for $<\mathrm{i}>\mathrm{s}<1 \mathrm{i}>-$-Geometrically Convex Functions.
Abstract and Applied Analysis, 2012, 2012, 1-14.

Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be

$0.7 \quad 41$

The best bounds in Wallisâ $€^{\text {TM }}$ inequality. Proceedings of the American Mathematical Society, 2004, 133, 397-401.
25 A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw's double inequality. Journal of Computational and Applied Mathematics, 2007, 206, 1007-1014. 1.1 37
26 NOTES ON THE SCHUR-CONVEXITY OF THE EXTENDED MEAN VALUES. Taiwanese Journal of Mathematics, 2005, 9, 411. 0.2 36
27 Bounds for the ratio of two gamma functions: from Wendelâ $\epsilon^{T M}$ s asymptotic relation to 0.5 36
Generalization and Refinements of Hermite-Hadamard's Inequality. Rocky Mountain Journal of 28 Mathematics, 2005, 35, 235. 0.2 35
34Some properties of functions related to the gamma and psi functions. Integral Transforms and SpecialFunctions, 2010, 21, 153-164.
30 Completely monotonic functions involving divided differences of the di- and tri-gamma functions and0.434some applications. Communications on Pure and Applied Analysis, 2009, 8, 1975-1989.Explicit Formulas for Special Values of the Bell Polynomials of the Second Kind and for the EulerExplicit Formulas for Special Values of the Bell Polynomials of the Second Kind and
Numbers and Polynomials. Mediterranean Journal of Mathematics, 2017, 14, 1.0.433Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric
Logarithmic convexity of extended mean values. Proceedings of the American Mathematical Society,
$33 \quad$ 2001, 130, 1787-1796. 0.4 32
A completely monotonic function involving the tri-gamma function and with degree one. Applied
Mathematics and Computation, 2012, 218, $9890-9897$.1.432

\#	Article	IF	Citations
37	Explicit expressions for a family of the Bell polynomials and applications. Applied Mathematics and Computation, 2015, 258, 597-607.	1.4	32
38	Some Inequalities of Äஞeby \AA_{j} ev Type for Conformable k-Fractional Integral Operators. Symmetry, 2018, 10, 614.	1.1	32
39	Generalized fractional integral inequalities of Hermiteâ€"Hadamard type for \$\{(alpha,m)\}\$-convex functions. Journal of Inequalities and Applications, 2019, 2019, .	0.5	32
40	A CLASS OF COMPLETELY MONOTONIC FUNCTIONS INVOLVING DIVIDED DIFFERENCES OF THE PSI AND TRI-GAMMA FUNCTIONS AND SOME APPLICATIONS. Journal of the Korean Mathematical Society, 2011, 48, 655-667.	0.4	32
41	Wendelâ $\epsilon^{T_{M}}$ s and Gautschiâ $€^{T M}$ s inequalities: Refinements, extensions, and a class of logarithmically completely monotonic functions. Applied Mathematics and Computation, 2008, 205, 281-290.	1.4	31
42	Several closed expressions for the Euler numbers. Journal of Inequalities and Applications, 2015, 2015, .	0.5	31
43	On complete monotonicity for several classes of functions related to ratios of gamma functions. Journal of Inequalities and Applications, 2019, 2019, .	0.5	31
44	Special values of the Bell polynomials of the second kind for some sequences and functions. Journal of Mathematical Analysis and Applications, 2020, 491, 124382.	0.5	31
45	Complete Monotonicity of a Difference Between the Exponential and Trigamma Functions and Properties Related to a Modified Bessel Function. Mediterranean Journal of Mathematics, 2013, 10, 1685-1696.	0.4	30
46	Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind. Journal of Computational and Applied Mathematics, 2014, 272, 251-257.	1.1	30
47	Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2017, 111, 425-434.	0.6	30
48	Several q-integral inequalities. Journal of Mathematical Inequalities, 2009, , 115-121.	0.5	30
49	A Note on Schur-Convexity of Extended Mean Values. Rocky Mountain Journal of Mathematics, 2005, 35, 1787.	0.2	29
50	Supplements to a class of logarithmically completely monotonic functions associated with the gamma function. Applied Mathematics and Computation, 2008, 197, 768-774.	1.4	29
51	Complete monotonicity of a function involving the divided difference of digamma functions. Science China Mathematics, 2013, 56, 2315-2325.	0.8	29
52	Sharp Inequalities for Polygamma Functions. Mathematica Slovaca, 2015, 65, 103-120.	0.3	29
53	Some inequalities constructed by Tchebysheff's integral inequality. Mathematical Inequalities and Applications, 1999, , 517-528.	0.1	29
54	Generalization of Bernoulli polynomials. International Journal of Mathematical Education in Science and Technology, 2002, 33, 428-431.	0.8	28

Some uniqueness results for the non-trivially complete monotonicity of a class of functions
involving the polygamma and related functions. Integral Transforms and Special Functions,

$$
55 \text { involving the polygamma and related functions. Integral Transforms and Special Functions, 2010, 21, }
$$

849-858.
57
Some properties of the Catalanâ€"Qi function related to the Catalan numbers. SpringerPlus, 2016, 5,
59 The function $\$\left(b^{\wedge} x-a^{\wedge} x\right) / x \$$: Inequalities and properties. Proceedings of the American Mathematical
Society, 1998, 126,3355-3359.
Properties and applications of a function involving exponential functions. Communications on Pure
and Applied Analysis, 2009, 8, 1231-1249.
Convexity of the generalized sine function and the generalized hyperbolic sine function. Journal of
Approximation Theory, 2013, 174, 1-9.

76 Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Revista

79	A simple proof of logarithmic convexity of extended mean values. Numerical Algorithms, 2009, 52, 89-92.	1.1	23
80	Complete monotonicity of a function involving the ratio of gamma functions and applications. Banach Journal of Mathematical Analysis, 2012, 6, 35-44.	0.4	23
81	The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat, 2014, 28, 775-780.	0.2	23
82	Refinements and Extensions of an Inequality, II. Journal of Mathematical Analysis and Applications, 1997, 211, 616-620.	0.5	22

83	Note on monotonicity of generalized weighted mean values. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 3259-3260.	1.0	22
84	Some new inequalities of Hermiteấ "Hadamard type for<i>n<\|i>-time differentiable functions which are<i>m</i>-convex. Analysis (Germany), 2012, 32, 247-262.	0.2	22
85	Some Hermite-Hadamard type inequalities for n-time differentiable "Equation missing" <!-- No EquationSource Format="TEX", only image and EquationSource Format="MATHML" -->-convex functions. Journal of Inequalities and Applications, 2012, 2012,	0.5	22

95

Some inequalities of the $G r \tilde{A} 1 / 4$ ss type for conformable $\$ \$\{v a r v e c\{k\}\} \$ \$$-fractional integral operators.
Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2020, $114,1$.
0.6

21

96 Limit formulas for ratios between derivatives of the gamma and digamma functions at their
singularities. Filomat, 2013, 27, 601-604.
0.2

21

> Generalized \<em\>;\</em\>-fractional conformable integrals and related inequalities. AIMS
> Mathematics, 2019, 4, 343-358.
0.7

21
99 An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second
kind. Journal of Number Theory, 2014, 144, 244-255.0.220

130.

The function (bxâ^ax)/x: Logarithmic convexity and applications to extended mean values. Filomat, 2011,

Logarithmically completely monotonic functions concerning gamma and digamma functions. Integral
109 A general refinement of Jordan's inequality and a refinement of L. Yang's inequality. Integral 0.8 19
Transforms and Special Functions, 2008, 19, 157-164.A class of logarithmically completely monotonic functions and application to the best bounds in the1.1538-543.
111 Complete monotonicity, completely monotonic degree, integral representations, and an inequality 0.7 19
Analysis, 2014, 2, .112 A double inequality for bounding Toader mean by the centroidal mean. Proceedings of the Indian0.2Academy of Sciences: Mathematical Sciences, 2014, 124, 527-531.19
113 A logarithmically completely monotonic function involving the gamma function and originating from 0.7 the Catalan numbers and function. Global Journal of Mathematical Analysis, 2015, 3, 140. 19
Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling 0.0 19
numbers. Acta Universitatis Sapientiae, Mathematica, 2016, 8, 282-297.
Explicit formulas and recurrence relations for higher order Eulerian polynomials. Indagationes 0.2 19
115 Explicit formulas and recurrence rel0.219
Sharpening and generalizations of Shafer-Fink's double inequality for the arc sine function. Filomat, 2013, 27, 261-265.0.2
117 Generalizations of Hermiteâ€"Hadamard inequality to <i>n-time differentiable functions which are<i>s</i>-convex in the second sense. Analysis (Germany), 2012, 32, 209-220. 0.2 18

Some Determinantal Expressions and Recurrence Relations of the Bernoulli Polynomials.

Some Determinantal Expressions and Recurrence Relations of the Bernoulli Polynomials.

118 Mathematics, 2016, 4, 65.

118 Mathematics, 2016, 4, 65.
1.1
1.1 18 18
119 Monotonicity results and inequalities for the gamma and incomplete gamma functions. Mathematical Inequalities and Applications, 2002, , 61-67.
0.1 18
Monotonicity of sequences involving convex function and sequence. Mathematical Inequalities and Applications, 2006, , 247-254. 0.1 18
120
0.5 17
Generalization of H. Alzer's Inequality. Journal of Mathematical Analysis and Applications, 1999, 240,
121 294-297.An extension of an inequality for ratios of gamma functions. Journal of Approximation Theory, 2011,0.517
163, 1208-1216.
0.2 17123 Sharp inequalities for the psi function and harmonic numbers. Analysis (Germany), 2014, 34, .

\#	Article	IF	Citations		
127	Parametric integrals, the Catalan numbers, and the beta function. Elemente Der Mathematik, 2017, 72, 103-110.	0.1	17		
128	Closed forms for derangement numbers in terms of the Hessenberg determinants. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2018, 112, 933-944.	0.6	17		
129	INEQUALITIES AND MONOTONICITY FOR THE RATIO OF GAMMA FUNCTIONS. Taiwanese Journal of Mathematics, 2003, 7, .	0.2	17		
130	Integral representations and properties of some functions involving the logarithmic function. Filomat, 2016, 30, 1659-1674.	0.2	17		
131	Integral Inequalities of Hermite-Hadamard Type for Functions Whose 3rd Derivatives Are \&\|t;i\>s\&	t;	i\>-Convex. Applied Mathematics, 2012, 03, 1680-1685.	0.1	17
132	Monotonicity of sequences involving convex and concave functions. Mathematical Inequalities and Applications, 2003, , 229-239.	0.1	17		
133	A new lower bound in the second Kershaw's double inequality. Journal of Computational and Applied Mathematics, 2008, 214, 610-616.	1.1	16		
134	Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values. Applied Mathematics and Computation, 2009, 208, 129-133.	1.4	16		
135	COMPLETE MONOTONICITY OF A FUNCTION INVOLVING THE DIVIDED DIFFERENCE OF PSIÂFUNCTIONS. Bulletin of the Australian Mathematical Society, 2013, 88, 309-319.	0.3	16		
136	Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers. Analysis (Germany), 2014, 34, 311-317.	0.2	16		
137	Expansions of the exponential and the logarithm of power series and applications. Arabian Journal of Mathematics, 2017, 6, 95-108.	0.4	16		
138	Integral representations for multivariate logarithmic polynomials. Journal of Computational and Applied Mathematics, 2018, 336, 54-62.	1.1	16		
139	A Closed Formula for the Horadam Polynomials in Terms of a Tridiagonal Determinant. Symmetry, 2019, 11, 782.	1.1	16		
140	Derivative polynomials of a function related to the Apostol-Euler and Frobenius-Euler numbers. Journal of Nonlinear Science and Applications, 2017, 10, 1345-1349.	0.4	16		
141	Completely monotonic degree of a function involving trigamma and tetragamma functions. AIMS Mathematics, 2020, 5, 3391-3407.	0.7	16		
142	A refinement of a double inequality for the gamma function. Publicationes Mathematicae, 2012, 80, 333-342.	0.1	16		
143	A new upper bound in the second Kershaw's double inequality and its generalizations. Journal of Computational and Applied Mathematics, 2008, 220, 111-118.	1.1	15		
144	A class of logarithmically completely monotonic functions related to the gamma function with applications. Integral Transforms and Special Functions, 2012, 23, 557-566.	0.8	15		

\#	Article	IF	Citations
145	Some Hermiteâ€"Hadamard type inequalities for geometrically quasi-convex functions. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 2014, 124, 333-342.	0.2	15
146	Hermite-Hadamard type inequalities for geometrically r-convex functions. Studia Scientiarum Mathematicarum Hungarica, 2014, 51, 530-546.	0.1	15
147	Some inequalities for the Bell numbers. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 2017, 127, 551-564.	0.2	15
148	Completely monotonic degrees for a difference between the logarithmic and psi functions. Journal of Computational and Applied Mathematics, 2019, 361, 366-371.	1.1	15
149	A LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTION INVOLVING THE RATIO OF GAMMA FUNCTIONS. Journal of Applied Analysis and Computation, 2015, 5, 626-634.	0.2	15
150	HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRIC-ARITHMETICALLY s-CONVEX FUNCTIONS. Communications of the Korean Mathematical Society, 2014, 29, 51-63.	0.2	15
151	SOME LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS RELATED TO THE GAMMA FUNCTION. Journal of the Korean Mathematical Society, 2010, 47, 1283-1297.	0.4	15
152	Inequalities for the Incomplete Gamma and Related Functions. Mathematical Inequalities and Applications, 1999, , 47-53.	0.1	15
153	Complete monotonicity of the logarithmic mean. Mathematical Inequalities and Applications, 2007, , 799-804.	0.1	15
154	Complete monotonicity of two functions involving the tri-and tetra-gamma functions. Periodica Mathematica Hungarica, 2012, 65, 147-155.	0.5	14
155	Some exact constants for the approximation of the quantity in the Wallisấ ${ }^{\mathrm{TM}}$ formula. Journal of Inequalities and Applications, 2013, 2013,.	0.5	14
156	A completely monotonic function involving the tri- and tetra-gamma functions. Mathematica Slovaca, 2013, 63, .	0.3	14
157	An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions. Clobal Journal of Mathematical Analysis, 2014, 2, .	0.7	14
158	Hermite-Hadamard type inequalities for n-times differentiable and preinvex functions. Journal of Inequalities and Applications, 2014, 2014, .	0.5	14
159	Some new inequalities of Simpson type for strongly \$\$varvec $\{s\} \$ \$ \mathrm{~s}$-convex functions. Afrika Matematika, 2015, 26, 741-752.	0.4	14
160	Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers. Cogent Mathematics, 2016, 3, 1179379.	0.4	14
161	From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions. Journal of Mathematical Analysis and Applications, 2021, 493, 124478.	0.5	14
162	Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Mathematics, 2021, 6, 7494-7517.	0.7	14

\#	Article	IF	Citations
163	LOGARITHMIC CONVEXITY OF THE ONE-PARAMETER MEAN VALUES. Taiwanese Journal of Mathematics, 2007, 11,	0.2	14
164	The inverse of a triangular matrix and several identities of the Catalan numbers. Applicable Analysis and Discrete Mathematics, 2019, 13, 518-541.	0.3	14
165	An integral representation, complete monotonicity, and inequalities of the Catalan numbers. Filomat, 2018, 32, 575-587.	0.2	14
166	Some bounds for the complete elliptic integrals of the first and second kinds. Mathematical Inequalities and Applications, 2011, , 323-334.	0.1	14
167	Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions. Mathematical Inequalities and Applications, 2015, , 493-518.	0.1	14
168	On Steffensen pairs. Journal of Mathematical Analysis and Applications, 2002, 271, 534-541.	0.5	13
169	A class of logarithmically completely monotonic functions associated with the gamma function. Journal of Computational and Applied Mathematics, 2009, 224, 127-132.	1.1	13
170	Some properties of a class of functions related to completely monotonic functions. Computers and Mathematics With Applications, 2012, 64, 1649-1654.	1.4	13
171	Integral representations of bivariate complex geometric mean and their applications. Journal of Computational and Applied Mathematics, 2018, 330, 41-58.	1.1	13
172	Notes on a Double Inequality for Ratios of any Two Neighbouring Non-zero Bernoulli Numbers. Turkish Journal of Analysis and Number Theory, 2018, 6, 129-131.	0.1	13
173	On Hermite-Hadamard Type Inequalities for ($\hat{\imath} \pm, ~ M ~)$-Convex Functions. International Journal of Open Problems in Computer Science and Mathematics, 2012, 5, 47-56.	0.2	13
174	ON A TWO-PARAMETER FAMILY OF NONHOMOGENEOUS MEAN VALUES. Tamkang Journal of Mathematics, 1998, 29, 155-163.	0.3	13
175	LÃ@vy-Khintchine representation of the geometric mean of many positive numbers and applications. Mathematical Inequalities and Applications, 2014, , 719-729.	0.1	13
176	Generalizations of Alzer's and Kuang's inequality. Tamkang Journal of Mathematics, 2000, 31, 223-228.	0.3	13
177	Recursion Formulae for \$sum^n_\{m=1\} m^k\$. Zeitschrift Fur Analysis Und Ihre Anwendung, 1999, 18, 1123-1130.	0.8	12
178	Monotonicity and logarithmic concavity of two functions involving exponential function. International Journal of Mathematical Education in Science and Technology, 2008, 39, 686-691.	0.8	12
179	Sharpening and Generalizations of Shafer's Inequality for the Arc Tangent Function. Journal of Inequalities and Applications, 2009, 2009, 930294.	0.5	12
180	Some properties of extended remainder of binetâ $€^{\mathrm{TM}} \mathrm{S}$ first formula for logarithm of gamma function. Mathematica Slovaca, 2010, 60, .	0.3	12

181

A new explicit formula for the Bernoulli and Genocchi numbers in terms of the Stirling numbers.
Global Journal of Mathematical Analysis, 2014, 3, 33.
Complete monotonicity of functions involving the \$\$q\$\$ -trigamma and \$\$q\} \$\$ q-tetragamma
182 functions. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas,
2015, 109, 419-429.
$183 \begin{aligned} & \text { Some fractional differential equations involving generalized hypergeometric functions. Journal of } \\ & \text { Applied Analysis, 2019, 25, 37-44. }\end{aligned}$
$184 \quad \begin{aligned} & \text { A ratio of finitely many gamma functions and its properties with applications. Revista De La Real } \\ & \text { Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2021, 115, 1. }\end{aligned}$
0.6

12

Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios. Revista De
La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2021, 115, 1.

Explicit and recursive formulas, integral representations, and properties of the large SchrÃๆder numbers. Kragujevac Journal of Mathematics, 2017, 41, 121-141.
0.3

12
186
$0.1 \quad 12$

> New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean
187 New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean
values. Mathematical Inequalities and Applications, 2000, ,377-383.

Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind. Mathematical Inequalities and Applications, 2016, , 313-323.
$0.1 \quad 12$
188
$0.6 \quad 12$
18980.22 Inequalities for an Integral. Mathematical Gazette, 1996, 80, 376.

$190 \quad$| A class ofk-log-convex functions and their applications to some special functions. Integral |
| :--- |
| Transforms and Special Functions, 2008, 19, 195-200. |

Transforms and Special Functions, 2008, 19, 195-200.
191 Schur-convexity of the Catalanâ€"Qi function related to the Catalan numbers. Tbilisi Mathematical
Journal, 2016, 9, .
$0.3 \quad 11$

192 Logarithmically complete monotonicity of a function related to the Catalan-Qi function. Acta
Universitatis Sapientiae, Mathematica, 2016, 8, 93-102.
$0.0 \quad 11$

The harmonic and geometric means are Bernstein functions. Boletin De La Sociedad Matematica
193 Mexicana, 2017, 23, 713-736.
0.2

11

A double inequality for an integral mean in terms of the exponential and logarithmic means. Periodica
Mathematica Hungarica, 2017, 75, 180-189.
0.5

11

Some identities related to Eulerian polynomials and involving the Stirling numbers. Applicable
195 Some identities related to Eulerian polynomials and invo
$0.3 \quad 11$

Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions. Applicable Analysis and Discrete Mathematics, 2020, 14, 512-527.
FOUR LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING GAMMA FUNCTION. Journal ofthe Korean Mathematical Society, 2008, 45, 559-573.
On a new generalization of Alzer's inequality. International Journal of Mathematics and Mathematical
205 Complete monotonicity of a function involving the gamma function and applications. Periodica
207 Inequalities of Hermiteấ $\epsilon^{\text {"Hadamard type involving an s-convex function with applications. Applied }}$614-630.210 Explicit, Determinantal, and Recurrent Formulas of Generalized Eulerian Polynomials. Axioms, 2021, 10,
221 The reciprocal of the weighted geometric mean is a Stieltjes function. Boletin De La Sociedad

> Necessary and sufficient conditions for complete monotonicity and monotonicity of two functions

225 defined by two derivatives of a function involving trigamma function. Applicable Analysis and Discrete
Hermite-Hadamard Type Inequalities for (\&|t;i\>m,) Tj ETQq0 00 rgBT /Overlock 10 Tf 50392 Td (h\</i\>\<SUB\>\&|t;i\>1\<

Fractional Integrals. Turkish Journal of Analysis and Number Theory, 2014, 2, 22-27.
227 An Improper Integral, the Beta Function, the Wallis Ratio, and the Catalan Numbers. Problemy Analiza, 2018, 25, 104-115.

235	Discussions on two integral inequalities of Hermiteâ $\epsilon^{\text {"Hadamard type for convex functions. Journal of }}$ Computational and Applied Mathematics, 2022, 406, 114049.	1.1	9
236	A function involving gamma function and having logarithmically absolute convexity. Integral Transforms and Special Functions, 2007, 18, 837-843.	0.8	8
237	Hermiteâ€"Hadamard-Type Integral Inequalities for Functions Whose First Derivatives are Convex. Ukrainian Mathematical Journal, 2015, 67, 625-640.	0.1	8
238	Some inequalities for the trigamma function in terms of the digamma function. Applied Mathematics and Computation, 2015, 271, 502-511.	1.4	8
239	Asymptotic Formulas and Inequalities for the Gamma Function in Terms of the Tri-Gamma Function. Results in Mathematics, 2015, 67, 395-402.	0.4	8
240	Integral Inequalities of Hermiteâ€"Hadamard Type for Extended s-Convex Functions and Applications. Mathematics, 2018, 6, 223.	1.1	8
241	Simplifying coefficients in differential equations for generating function of Catalan numbers. Journal of Taibah University for Science, 2019, 13, 947-950.	1.1	8
242	On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces. Mathematics, 2019, 7, 6.	1.1	8
243	Shannon Type Inequalities for Kapurâ€ $\mathbb{T M}^{\text {S }}$ Entropy. Mathematics, 2019, 7, 22.	1.1	8

 8
245 Notes on Several Families of Differential Equations Related to the Generating Function for the 245 Bernoulli Numbers of the Second Kind. Turkish Journal of Analysis and Number Theory, 2018, 6, 40-42. 0.1 8
246 A closed form for the Stirling polynomials in terms of the Stirling numbers. Tbilisi Mathematical 0.3 8
Journal, 2017, 10, .
0.1 8
247 Two Nice Determinantal Expressions and A Recurrence Relation for the Apostol-Bernoulli
Polynomials. Journal of the Indonesian Mathematical Society, 2017, 23, .Some Inequalities of Hermite-Hadamard Type for Functions Whose 3rd Derivatives Are\&|t;i\>P\&|t;/i\>-Convex. Applied Mathematics, 2012, 03, 1898-1902.A double inequality for remainder of power series of tangent function. Tamkang Journal of249 Mathematics, 2003, 34, 351-356.$0.3 \quad 8$
Some inequalities of Hermite-Hadamard type for \$r\$-\$varphi\$-preinvex functions. Tamkang Journal of Mathematics, 2014, 45, 31-38.

```
A representation for derangement numbers in terms of a tridiagonal determinant. Kragujevac Journal
of Mathematics, 2018, 42, 7-14.
```

$$
\begin{aligned}
& \text { On Schur m-power convexity for ratios of some means. Journal of Mathematical Inequalities, 2015, , } \\
& 145-153 .
\end{aligned}
$$

An alternative proof of ElezoviÄ $\ddagger-G i o r d a n o-P e A ̈ a r i A ̈ ~ \ddagger ' s ~ t h e o r e m . ~ M a t h e m a t i c a l ~ I n e q u a l i t i e s ~ a n d ~ A p p l i c a t i o n s, ~$261 Some properties of the SchrÃ〒der numbers. Indian Journal of Pure and Applied Mathematics, 2016, 47,261 717-732.
263 Simplifying differential equations concerning degenerate Bernoulli and Euler numbers. Transactions
265 Necessary and sufficient conditions for a difference constituted by four derivatives of a function 265 involving trigamma function to be completely monotonic. Mathematical Inequalities and Applications, 0.1 2021, , 845-855.
267 Schur-geometric and Schur-harmonic Convexity of an Integral Mean for Convex Functions. Turkish Journal of Analysis and Number Theory, 2016, 3, 87-89.0.1On the Appell type $̂$ » -Changhee polynomials. Journal of Nonlinear Science and Applications, 2016, 09,

[^0]```
271 Some inequalities of Hermite-Hadamard type for m-harmonic-arithmetically convex functions.
ScienceAsia, 2015, 41, 357.
```

Extension of an Inequality of H. Alzer for Negative Powers. Tamkang Journal of Mathematics, 2005, 36, 69-72.

274 Sharp bounds for Neuman-SÃ ${ }_{i n d o r a ̂} €^{T M}$ S mean in terms of the root-mean-square. Periodica Mathematica275 A determinantal representation for derangement numbers. Global Journal of Mathematical Analysis,

276 Two explicit formulas for the generalized Motzkin numbers. Journal of Inequalities and Applications, 2017, $2017,44$.
277 The reciprocal of the geometric mean of many positive numbers is a Stieltjes transform. Journal of Computational and Applied Mathematics, 2017, 311, 165-170.
278 Several series identities involving the Catalan numbers. Transactions of A Razmadze Mathematical Institute, 2018, 172, 466-474.
$0.7 \quad 6$
279 Some properties and an application of multivariate exponential polynomials. Mathematical Methods in the Applied Sciences, 2020, 43, 2967-2983.
280 Monotonicity properties for a ratio of finite many gamma functions. Advances in DifferenceEquations, 2020, 2020, 193.

| 289 | Computation of several Hessenberg determinants. Mathematica Slovaca, 2020, 70, 1521-1537. | 0.3 | 6 |
| :---: | :---: | :---: | :---: |
| 290 | Hermite--Hadamard type integral inequalities via ( $\mathrm{s}, \mathrm{m}$ )--P--convexity on co-ordinates. Journal of Nonlinear Science and Applications, 2016, 09, 876-884. | 0.4 | 6 |
| 291 | Integral inequalities of Simpsons type for ( $\hat{I} \pm, m$ )-convex functions. Journal of Nonlinear Science and Applications, 2016, 09, 6364-6370. | 0.4 | 6 |

292 Determinantal forms and recursive relations of the Delannoy two-functional sequence. Advances in

| 307 | On integral inequalities of the Hermiteâ€"Hadamard type for co-ordinated ( $\hat{ \pm}, \mathrm{m} 1$ )-(s, m2)-convex functions. Journal of Interdisciplinary Mathematics, 2018, 21, 1505-1518. | 0.4 | 5 |
| :---: | :---: | :---: | :---: |
| 308 | Equivalent theorem of approximation by linear combination of weighted Baskakovâ€"Kantorovich operators in Orlicz spaces. Journal of Inequalities and Applications, 2019, 2019, . | 0.5 | 5 |
| 309 | Monotonicity properties and inequalities related to generalized $\operatorname{Gr}$ Ãftzsch ring functions. Open Mathematics, 2019, 17, 802-812. | 0.5 | 5 |
| 310 | A LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTION INVOLVING THE GAMMA FUNCTION. Taiwanese Journal of Mathematics, 2010, 14, . | 0.2 | 5 |
| 311 | On the Increasing Monotonicity of a Sequence Originating from Computation of the Probability of Intersecting between a Plane Couple and a Convex Body. Turkish Journal of Analysis and Number Theory, 2016, 3, 21-23. | 0.1 | 5 |
| 312 | Convexity and inequalities related to extended beta and confluent hypergeometric functions. AIMS Mathematics, 2019, 4, 1499-1507. | 0.7 | 5 |
| 313 | Several explicit and recursive formulas for generalized Motzkin numbers. AIMS Mathematics, 2020, 5, 1333-1345. | 0.7 | 5 |
| 314 | Schur-harmonic convexity for differences of some special means in two variables. Journal of Mathematical Inequalities, 2014, , 321-330. | 0.5 | 5 |
| 315 | Lower Bound of Sectional Curvature of Fisherâ€"Rao Manifold of Beta Distributions and Complete Monotonicity of Functions Involving Polygamma Functions. Results in Mathematics, 2021, 76, 1. | 0.4 | 5 |
| 316 | Monotonicity of sequences involving geometric means of positive sequences with monotonicity and logarithmical convexity. Mathematical Inequalities and Applications, 2006, , 1-9. | 0.1 | 5 |
| 317 | Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5, 2732-2742. | 0.7 | 5 |
| 318 | Decreasing properties of two ratios defined by three and four polygamma functions. Comptes Rendus Mathematique, 2022, 360, 89-101. | 0.1 | 5 |
| 319 | A lower bound for ratio of power means. International Journal of Mathematics and Mathematical Sciences, 2004, 2004, 49-53. | 0.3 | 4 |

Generalizations of Several Inequalities Related to Multivariate Geometric Means. Mathematics, 2019, 7,
331 MEANS. Taiwanese Journal of Mathematics, 2003, 7 , .$0.2 \quad 4$0.5

4

| A Double Inequality for the Harmonic Number in Terms of the Hyperbolic Cosine. Turkish Journal of | 0.1 |
| :--- | :--- |
| 333 Analysis and Number Theory, 2014, 2, 223-225. |  |

335 Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind. AIMS Mathematics, 2019, 4, 170-175.
$0.7 \quad 4$Some inequalities and an application of exponential polynomials. Mathematical Inequalities and
$0.1 \quad 4$
Applications, 2020, , 123-135. $0.1 \quad 4$COMPLETE MONOTONICITY OF A DIFFERENCE BETWEEN THE EXPONENTIAL AND TRIGAMMA FUNCTIONS. The337 Pure and Applied Mathematics, 2014, 21, 141-145.$0.0 \quad 4$338 A new refinement of Young's inequality. Mathematical Inequalities and Applications, 2008, , 689-692.$0.1 \quad 4$
339
Relations among Bell polynomials, central factorial numbers, and central Bell polynomials. ..... 0.5 ..... 4
Monotonicity and sharp inequalities related to complete <mml:math340 xmlns:mml="http:|/www.w3.org/1998/Math/MathML">[mml:mrow](mml:mrow)[mml:mo](mml:mo) (</mml:mo>[mml:mi](mml:mi)p</mml:mi><@nml:mo>, k/mml:mointegrals of the first kind. Comptes Rendus Mathematique, 2020, 358, 961-970.

343 Alternative proofs for inequalities of some trigonometric functions. International Journal of
Some Inequalities for Multiple Integrals on the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
id="M1">[mml:mrow](mml:mrow) [mml:mi](mml:mi)n</mml:mi> </mml:mrow> </mml:math>-Dimensional Ellipsoid, Spherical
$344 \begin{array}{ll}\text { xmlns:mml= http:/|www.w3.org/1998/Math/MathML" } \\ \text { id="M1"><mml:mrow> <mml:mi>n</mml:mi></mml:mrow></m } \\ & \text { Shell, and Ball. Abstract and Applied Analysis, 2013, 2013, 1-7. }\end{array}$

345 An inequality involving the gamma and digamma functions. Journal of Applied Analysis, 2016, 22, .
0.23

Hermiteấ"Hadamard type inequalities for n-times differentiable and geometrically quasi-convex
346 Hermiteâ€"Hadamard type inequalities
1.2
0.3

3

347 A Unified Generalization of the Catalan, Fuss, and Fussâ€"Catalan Numbers. Mathematical and
Computational Applications, 2019, 24, 49.
$0.7 \quad 3$

Determinantal Formulas and Recurrent Relations for Bi-Periodic Fibonacci and Lucas Polynomials.
Advances in Intelligent Systems and Computing, 2021, , 263-276.
0.53

A closed-form expression of a remarkable sequence of polynomials originating from a family of entire
349 functions connecting the Bessel and Lambert functions. Sao Paulo Journal of Mathematical Sciences,
$0.2 \quad 3$ 2022, 16, 1238-1248.

350 \{Some integral inequalities of Hermite--Hadamard type for \$s\$-geometrically convex functions.
Miskolc Mathematical Notes, 2018, 19, 699.

Some inequalities of Hermite--Hadamard type for functions whose second derivatives are boldsymbol
351 ( $\mathbf{~} \pm, m$ )-convex. Journal of Nonlinear Science and Applications, 2016, 09, 139-148.
0.4

Closed formulas for special bell polynomials by Stirling numbers and associate Stirling numbers.
Publications De L'Institut Mathematique, 2020, 108, 131-136.
0.3

3

353 On the sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function. Acta
Universitatis Sapientiae, Mathematica, 2018, 10, 125-133.

SOME INEQUALITIES AND ABSOLUTE MONOTONICITY FOR MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND.
Communications of the Korean Mathematical Society, 2016, 31, 355-363.
0.2
0.0

3

Generalization of an inequality of Alzer for negative powers. Tamkang Journal of Mathematics, 2005,
0.3

36, 219-222.

Note on Alzer's inequality. Tamkang Journal of Mathematics, 2006, 37, 11-14.
0.3

Some properties and inequalities for h-geometrically convex functions. Journal of Classical Analysis,
0.1 2013, , 101-108.

PÃ3lya type integral inequalities: Origin, variants, proofs, refinements, generalizations, equivalences, and applications. Mathematical Inequalities and Applications, 2015, , 1-38.
0.13

Inequalities of Hermite-Hadamard type for convex functions which are n-times differentiable.
Mathematical Inequalities and Applications, 2013, , 1269-1278.
$0.1 \quad 3$

Generalizations and applications of Youngâ $€^{T M}$ s integral inequality by higher order derivatives. Journal of Inequalities and Applications, 2019, 2019, .

| \# | ARTICLE | IF | CITATIONS |
| :--- | :--- | :--- | :--- |
| 361 | Monotonicity, convexity and inequalities related to complete $\$(p, q, r) \$$-elliptic integrals and <br> generalized trigonometric functions. Publicationes Mathematicae, 2020,97, 181-199. | 0.1 | 3 |

362 An extension and a refinement of van der Corput's inequality. International Journal of Mathematics ..... 0.3 ..... 2 and Mathematical Sciences, 2006, 2006, 1-10.

$0.0 \quad 2$
363 90.42 Extension of an inequality of H. Alzer. Mathematical Gazette, 2006, 90, 293-295. ..... 2
0.0
364 Darbouxấ ${ }^{T M} s$ formula with integral remainder of functions with two independent variables. Applied ..... 1.4
1.4
A generalization of van der Corputâ€ ${ }^{\mathrm{TM}}$ s inequality. Applied Mathematics and Computation, 2008, 203,
$770-777$. $365 \quad \begin{aligned} & \text { A general } \\ & 770-777\end{aligned}$1.4
Monotonicity results and inequalities for the inverse hyperbolic sine function. Journal of Inequalities and Applications, 2013, 2013, . ..... 0.52
366
0.22
367 Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers. Analysis (Germany), 2014, 34,
$0.3 \quad 2$Symmetry identities of q-Bernoulli polynomials of the second kind. Indian Journal of Pure and Applied
368 Symmetry identities of q-Bernou
369 Properties and inequalities for the (h1, h2)- and (h1, h2, m)-CA-convex functions. Cogent Mathematics, 2016, 3, 1176620. contra-harmonic means. Mathematica Slovaca, 2016, 66, .
$371 \begin{aligned} & \text { Some new inequalities of the Hermiteâ } \epsilon_{\text {"Hadamard type for }} \text { on co-ordinates. Cogent Mathematics, 2016, 3, 1267300. }\end{aligned}$$1.0 \quad 2$Bounds for completely monotonic degree of a remainder for an asymptotic expansion of the trigamma
function. Arab Journal of Basic and Applied Sciences, 2021, 28, 314-318. 372
3.5 ..... 2
Several closed and determinantal forms for convolved Fibonacci numbers. Discrete Mathematics 373 Several closed andIntegral inequalities of Hermite-Hadamard type for GA-\$ F \$-convex functions. AIMS Mathematics, 2021,6, 9582-9589.$0.7 \quad 2$
Bounding the gamma function in terms of the trigonometric and exponential functions. Acta Scientiarum Mathematicarum, 2017, 83, 125-141.0.2Absolute monotonicity of a function involving the exponential function. Global Journal ofMathematical Analysis, 2014, 2, .
383 Continuous analogue of Alzer's inequality. Tamkang Journal of Mathematics, 2006, 37, 105-108.
Hermite-Hadamard Type Inequalities for the Product of \$(alpha, m)\$-Convex Function. Missouri$0.3 \quad 2$
Journal of Mathematical Sciences, 2015, 27, .
$385 \quad \begin{aligned} & \text { Refinements of Youngâ } €^{T M} \text { s Inte } \\ & \text { Derivatives1., 2020, , 193-227. }\end{aligned}$ ..... 2
386 Geometric interpretations and reversed versions of Young's integral inequality. Advances in the Theory of Nonlinear Analysis and Its Applications, 0, , .
$0.3 \quad 2$
387 On Degenerate Array Type Polynomials. CMES - Computer Modeling in Engineering and Sciences, 2022, ..... 131, 295-305.
0.8 ..... 2
388 Complete Monotonicity for a New Ratio of Finitely Many Gamma Functions. Acta Mathematica Scientia, 2022, 42, 511-520. ..... $0.5 \quad 2$
389 An inductive proof for an identity involving ( $\mathrm{n} k$ ) and the partial sums of some series. International Journal of Mathematical Education in Science and Technology, 2002, 33, 249-253.0.81Inequalities and monotonicity of the ratio of the geometric means of a positive arithmetic sequence390 with unit difference. International Journal of Mathematical Education in Science and Technology,0.812003, 34, 601-607.
391 More notes on a functional equa0.81Monotonicity Properties and Inequalities of Functions Related to Means. Rocky Mountain Journal of0.2Mathematics, 2006, 36, 857.
21
Convergence, monotonicity, and inequalities of sequences involving continued powers. Analysis
(Germany), 2013, 33, .
397 Two Explicit Formulas for Degenerate Peters Numbers and Polynomials. Discrete Mathematics Letters,
$0,8,1-5$. FUNCTIONS ON CO-ORDINATES. Journal of Applied Analysis and Computation, 2016, 6, 171-178.
$0.2 \quad 1$
401 Logarithmically complete monotonicity of a power-exponential function involving the logarithmic 0.7 and psi functions. Global Journal of Mathematical Analysis, 2015, 3, 77.
405 Some integral transforms of the generalized $k$-Mittag-Leffler function. Publications De L'Institut 405 Mathematique, 2019, 106, 125-133.
406 Several Explicit and Recurrent Formulas for Determinants of Tridiagonal Matrices

# A determinantal expression and a recursive relation of the Delannoy numbers. Acta Universitatis 

0.0
411 90.41 Introducing the Dirac delta function. Mathematical Gazette, 2006, 90, 292-293.

On an Analogue of Euler Polynomials and Related to Extended Fermionic p-Adic Integrals on \$\$
412 \{mathbb\{Z\}\}_\{p\} \$\$ Z p. Iranian Journal of Science and Technology, Transaction A: Science, 2017, 41,

A note on three variable symmetric identities for $q$-Euler polynomials arising from fermionic $p$-adic integral on Zp. Applied Mathematical Sciences, 0, 9, 3819-3826.

A note on three variable symmetric identities for modified q-Bernoulli polynomials arising from

Alternative proofs for summation formulas of some trigonometric series. Clobal Journal of Mathematical Analysis, 2017, 5, 44.


[^0]:    269
    Hermite--Hadamard type inequalities for (alpha,m)-HA and strongly (alpha,m)-HA convex functions.
    Journal of Nonlinear Science and Applications, 2017, 10, 205-214.

