Jonathan D Ashwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5930447/publications.pdf

Version: 2024-02-01

65 papers 6,830 citations

36 h-index 65 g-index

73 all docs 73 docs citations

73 times ranked

8256 citing authors

#	Article	IF	CITATIONS
1	Glucocorticoids in T cell development, differentiation and function. Nature Reviews Immunology, 2021, 21, 233-243.	10.6	106
2	Calcineurin inhibitors suppress acute graft-versus-host disease via NFAT-independent inhibition of T cell receptor signaling. Journal of Clinical Investigation, 2021, 131, .	3.9	18
3	TNF plays a crucial role in inflammation by signaling via T cell TNFR2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	25
4	Using Chromatin-Nuclear Receptor Interactions to Quantitate Endocrine, Paracrine, and Autocrine Signaling. Nuclear Receptor Signaling, 2020, 17, 155076291989964.	1.0	4
5	Glucocorticoids Oppose Thymocyte Negative Selection by Inhibiting Helios and Nur77. Journal of Immunology, 2019, 203, 2163-2170.	0.4	6
6	Single-Cell Resolution and Quantitation of Targeted Glucocorticoid Delivery in the Thymus. Cell Reports, 2019, 26, 3629-3642.e4.	2.9	20
7	Cutting Edge: De Novo Glucocorticoid Synthesis by Thymic Epithelial Cells Regulates Antigen-Specific Thymocyte Selection. Journal of Immunology, 2018, 200, 1988-1994.	0.4	24
8	Intensity and duration of TCR signaling is limited by p38 phosphorylation of ZAP-70 ^{T293} and destabilization of the signalosome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2174-2179.	3.3	27
9	Getting MAD at MYC. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9821-9823.	3.3	13
10	Unique properties of TCR-activated p38 are necessary for NFAT-dependent T-cell activation. PLoS Biology, 2018, 16, e2004111.	2.6	10
11	Host-Derived CD70 Suppresses Murine Graft-versus-Host Disease by Limiting Donor T Cell Expansion and Effector Function. Journal of Immunology, 2017, 199, 336-347.	0.4	11
12	Recruitment of calcineurin to the TCR positively regulates T cell activation. Nature Immunology, 2017, 18, 196-204.	7.0	67
13	The <scp>TBK</scp> 1â€binding domain of optineurin promotes type I interferon responses. FEBS Letters, 2016, 590, 1498-1508.	1.3	35
14	Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. Journal of Experimental Medicine, 2016, 213, 3041-3056.	4.2	20
15	Recruitment of A20 by the C-terminal domain of NEMO suppresses NF- \hat{l}^{Ω} B activation and autoinflammatory disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1612-1617.	3.3	65
16	Discovery and Characterization of a Biologically Active Non–ATP-Competitive p38 MAP Kinase Inhibitor. Journal of Biomolecular Screening, 2016, 21, 277-289.	2.6	6
17	CYLD and the NEMO Zinc Finger Regulate Tumor Necrosis Factor Signaling and Early Embryogenesis. Journal of Biological Chemistry, 2015, 290, 22076-22084.	1.6	11
18	câ€IAP ubiquitin protein ligase activity is required for 4â€IBB signaling and CD8 ⁺ memory Tâ€cell survival. European Journal of Immunology, 2015, 45, 2672-2682.	1.6	13

#	Article	IF	CITATIONS
19	lonizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming. International Journal of Biological Sciences, 2015, 11, 726-736.	2.6	35
20	Suppression of Dendritic Cell-Derived IL-12 by Endogenous Glucocorticoids Is Protective in LPS-Induced Sepsis. PLoS Biology, 2015, 13, e1002269.	2.6	76
21	Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nature Medicine, 2015, 21, 1337-1343.	15.2	52
22	Live Cell Imaging Unveils Multiple Domain Requirements for In Vivo Dimerization of the Glucocorticoid Receptor. PLoS Biology, 2014, 12, e1001813.	2.6	113
23	Counter-regulation of T cell effector function by differentially activated p38. Journal of Experimental Medicine, 2014, 211, 1257-1270.	4.2	32
24	A method for high purity sorting of rare cell subsets applied to TDC. Journal of Immunological Methods, 2013, 400-401, 111-116.	0.6	7
25	Optineurin Insufficiency Impairs IRF3 but Not NF-κB Activation in Immune Cells. Journal of Immunology, 2013, 191, 6231-6240.	0.4	73
26	CD4+ T cells are trigger and target of the glucocorticoid response that prevents lethal immunopathology in toxoplasma infection. Journal of Experimental Medicine, 2013, 210, 1919-1927.	4.2	44
27	Balance between NF-κB p100 and p52 Regulates T Cell Costimulation Dependence. Journal of Immunology, 2013, 190, 549-555.	0.4	22
28	c-IAP1 and c-IAP2 Redundancy Differs between T and B Cells. PLoS ONE, 2013, 8, e66161.	1.1	11
29	Identification and characterization of polyclonal $\hat{l}\pm\hat{l}^2$ -T cells with dendritic cell properties. Nature Communications, 2012, 3, 1223.	5.8	15
30	Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. Journal of Clinical Investigation, 2012, 122, 2384-2394.	3.9	102
31	Lack of the T cell–specific alternative p38 activation pathway reduces autoimmunity and inflammation. Blood, 2011, 118, 3280-3289.	0.6	50
32	Non-Canonical NF-κB Activation and Abnormal B Cell Accumulation in Mice Expressing Ubiquitin Protein Ligase-Inactive c-IAP2. PLoS Biology, 2010, 8, e1000518.	2.6	46
33	T Cell Receptor-mediated Activation of p38 \hat{i} ± by Mono-phosphorylation of the Activation Loop Results in Altered Substrate Specificity. Journal of Biological Chemistry, 2009, 284, 15469-15474.	1.6	46
34	Genetic disruption of p38α Tyr323 phosphorylation prevents T-cell receptor–mediated p38α activation and impairs interferon-γ production. Blood, 2009, 113, 2229-2237.	0.6	33
35	The CD8+ memory T-cell state of readiness is actively maintained and reversible. Blood, 2009, 114, 2121-2130.	0.6	37
36	IAPs: What's in a Name?. Molecular Cell, 2008, 30, 123-135.	4.5	420

#	Article	IF	CITATIONS
37	TWEAKing death. Journal of Cell Biology, 2008, 182, 15-17.	2.3	8
38	TWEAKing death. Journal of Experimental Medicine, 2008, 205, i19-i19.	4.2	0
39	Optineurin Negatively Regulates TNFα- Induced NF-κB Activation by Competing with NEMO for Ubiquitinated RIP. Current Biology, 2007, 17, 1438-1443.	1.8	257
40	The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nature Reviews Immunology, 2006, 6, 532-540.	10.6	337
41	The autoimmune suppressor Gadd45 \hat{l}_{\pm} inhibits the T cell alternative p38 activation pathway. Nature Immunology, 2005, 6, 396-402.	7.0	97
42	Alternative p38 activation pathway mediated by T cell receptor–proximal tyrosine kinases. Nature Immunology, 2005, 6, 390-395.	7.0	263
43	Activating p38 MAPK: New Tricks for an Old Kinase. Cell Cycle, 2005, 4, 1189-1192.	1.3	84
44	Posttranscriptional Downregulation of c-IAP2 by the Ubiquitin Protein Ligase c-IAP1 In Vivo. Molecular and Cellular Biology, 2005, 25, 3348-3356.	1.1	174
45	Antigen-Driven T Cell Expansion. Immunity, 2004, 21, 603-604.	6.6	3
46	Disruption of Glucocorticoid Receptor Exon 2 Yields a Ligand-Responsive C-Terminal Fragment that Regulates Gene Expression. Molecular Endocrinology, 2003, 17, 1534-1542.	3.7	49
47	Positive Effects of Glucocorticoids on T Cell Function by Up-Regulation of IL-7 Receptor $\hat{l}\pm$. Journal of Immunology, 2002, 168, 2212-2218.	0.4	142
48	Mice Lacking the p53-Effector Gene Gadd45a Develop a Lupus-Like Syndrome. Immunity, 2002, 16, 499-508.	6.6	170
49	TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature, 2002, 416, 345-347.	13.7	431
50	Inhibition of AP-1 by the Glucocorticoid-inducible Protein GILZ. Journal of Biological Chemistry, 2001, 276, 29603-29610.	1.6	257
51	Thymocyte Resistance to Glucocorticoids Leads to Antigen-Specific Unresponsiveness Due to "Holes― in the T Cell Repertoire. Immunity, 2000, 12, 183-192.	6.6	56
52	Glucocorticoids in T Cell Development and Function. Annual Review of Immunology, 2000, 18, 309-345.	9.5	709
53	Ubiquitin Protein Ligase Activity of IAPs and Their Degradation in Proteasomes in Response to Apoptotic Stimuli. Science, 2000, 288, 874-877.	6.0	913
54	Genomic instability in Gadd45a-deficient mice. Nature Genetics, 1999, 23, 176-184.	9.4	468

#	Article	IF	CITATIONS
55	Bacterial death induced by expression of the intracellular portion of human Fas. Cell Death and Differentiation, 1999, 6, 805-812.	5.0	4
56	Thymocyte apoptosis. Journal of Clinical Immunology, 1999, 19, 337-349.	2.0	21
57	When complex worlds collide: retinoic acid and apoptosis. Cell Death and Differentiation, 1998, 5, 1-3.	5.0	3
58	A Positive Role for Thymus-Derived Steroids in Formation of the T-Cell Repertoire. Annals of the New York Academy of Sciences, 1998, 840, 317-327.	1.8	43
59	Thymocyte Glucocorticoid Resistance Alters Positive Selection and Inhibits Autoimmunity and Lymphoproliferative Disease in MRL-lpr/lprMice. Immunity, 1998, 8, 67-76.	6.6	66
60	Thymus-derived Glucocorticoids Regulate Antigen-specific Positive Selection. Journal of Experimental Medicine, 1997, 185, 2033-2038.	4.2	130
61	Crossâ€Talk between the T Cell Antigen Receptor and the Glucocorticoid Receptor Regulates Thymocyte Development. Stem Cells, 1996, 14, 490-500.	1.4	65
62	Regulation of the p70zap tyrosine protein kinase in T cells by the CD45 phosphotyrosine phosphatase. European Journal of Immunology, 1995, 25, 942-946.	1.6	69
63	A targeted glucocorticoid receptor antisense transgene increases thymocyte apoptosis and alters thymocyte development. Immunity, 1995, 3, 647-656.	6.6	175
64	Promotion and Inhibition of Activation-Induced Apoptosis in T-Cell Hybridomas by Oncogenes and Related Signals. Immunological Reviews, 1994, 142, 321-342.	2.8	55
65	T-cell recognition of antigen and the Ia molecule as a ternary complex. Nature, 1986, 320, 176-179.	13.7	85