Déborah LeCorre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5930407/publications.pdf

Version: 2024-02-01

687335 940516 1,810 17 13 16 citations h-index g-index papers 18 18 18 1613 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Starch Nanoparticles: A Review. Biomacromolecules, 2010, 11, 1139-1153.	5.4	860
2	Preparation and application of starch nanoparticles for nanocomposites: A review. Reactive and Functional Polymers, 2014, 85, 97-120.	4.1	196
3	Influence of native starch's properties on starch nanocrystals thermal properties. Carbohydrate Polymers, 2012, 87, 658-666.	10.2	140
4	Influence of botanic origin and amylose content on the morphology of starch nanocrystals. Journal of Nanoparticle Research, 2011, 13, 7193-7208.	1.9	126
5	Enzymatic Pretreatment for Preparing Starch Nanocrystals. Biomacromolecules, 2012, 13, 132-137.	5.4	119
6	Evidence of Micro- and Nanoscaled Particles during Starch Nanocrystals Preparation and Their Isolation. Biomacromolecules, 2011, 12, 3039-3046.	5 . 4	93
7	All-cellulose composites based on microfibrillated cellulose and filter paper via a NaOH-urea solvent system. Cellulose, 2016, 23, 593-609.	4.9	78
8	Ceramic membrane filtration for isolating starch nanocrystals. Carbohydrate Polymers, 2011, 86, 1565-1572.	10.2	43
9	Influence of the Botanic Origin of Starch Nanocrystals on the Morphological and Mechanical Properties of Natural Rubber Nanocomposites. Macromolecular Materials and Engineering, 2012, 297, 969-978.	3.6	32
10	Optimization of the batch preparation of starch nanocrystals to reach daily timeâ€scale. Starch/Staerke, 2012, 64, 489-496.	2.1	31
11	Comparative Sustainability Assessment of Starch Nanocrystals. Journal of Polymers and the Environment, 2013, 21, 71-80.	5.0	27
12	Surface tension of concentrated cellulose solutions in 1-ethyl-3-methylimidazolium acetate. Cellulose, 2016, 23, 1043-1050.	4.9	17
13	All starch nanocomposite coating for barrier material. Journal of Applied Polymer Science, 2014, 131, .	2.6	15
14	Guide to electrospinning denatured whole chain collagen from hoki fish using benign solvents. International Journal of Biological Macromolecules, 2018, 112, 1289-1299.	7.5	14
15	Shear-electrospinning: extending the electrospinnability range of polymer solutions. Journal of Materials Science, 2016, 51, 6686-6696.	3.7	8
16	Electrospun cellulosic fibre-reinforced composite materials., 2014,, 115-158.		3
17	Mind the gap: Ensuring laboratoryâ€scale testing of an electrospinning product meets commercialâ€scale needs. Journal of Applied Polymer Science, 2017, 134, .	2.6	2